Order of magnitude improvement of nano-contact spin torque nano-oscillator performance

被引:20
作者
Banuazizi, Seyed Amir Hossein [1 ]
Sani, Sohrab R. [2 ]
Eklund, Anders [3 ]
Naiini, Maziar M. [3 ]
Mohseni, Seyed Majid [4 ]
Chung, Sunjae [1 ,5 ]
Durrenfeld, Philipp [5 ]
Malm, B. Gunnar [3 ]
Akerman, Johan [1 ,5 ,6 ]
机构
[1] KTH Royal Inst Technol, Sch Informat & Commun Technol, Dept Mat & Nano Phys, Electrum 229, S-16440 Kista, Sweden
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] KTH Royal Inst Technol, Sch Informat & Commun Technol, Dept Integrated Devices & Circuits, Electrum 229, S-16440 Kista, Sweden
[4] Shahid Beheshti Univ, Dept Phys, Tehran 19839, Iran
[5] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden
[6] NanOsc AB, Electrum 205, S-16440 Kista, Sweden
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
PHASE-LOCKING; DEVICES; WAVES;
D O I
10.1039/c6nr07309c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t(Cu)) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t(Cu) from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.
引用
收藏
页码:1896 / 1900
页数:5
相关论文
共 38 条
[1]   Toward a universal memory [J].
Åkerman, J .
SCIENCE, 2005, 308 (5721) :508-510
[2]   Emission of spin waves by a magnetic multilayer traversed by a current [J].
Berger, L .
PHYSICAL REVIEW B, 1996, 54 (13) :9353-9358
[3]   Nano-Contact Spin-Torque Oscillators as Magnonic Building Blocks [J].
Bonetti, Stefano ;
Akerman, Johan .
MAGNONICS: FROM FUNDAMENTALS TO APPLICATIONS, 2013, 125 :177-187
[4]   Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts [J].
Bonetti, Stefano ;
Tiberkevich, Vasil ;
Consolo, Giancarlo ;
Finocchio, Giovanni ;
Muduli, Pranaba ;
Mancoff, Fred ;
Slavin, Andrei ;
Akerman, Johan .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[5]   Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz [J].
Bonetti, Stefano ;
Muduli, Pranaba ;
Mancoff, Fred ;
Akerman, Johan .
APPLIED PHYSICS LETTERS, 2009, 94 (10)
[6]   Nanoscale magnetic field detection using a spin torque oscillator [J].
Braganca, P. M. ;
Gurney, B. A. ;
AWilson, B. ;
Katine, J. A. ;
Maat, S. ;
Childress, J. R. .
NANOTECHNOLOGY, 2010, 21 (23)
[7]   Spin-Torque and Spin-Hall Nano-Oscillators [J].
Chen, Tingsu ;
Dumas, Randy K. ;
Eklund, Anders ;
Muduli, Pranaba K. ;
Houshang, Afshin ;
Awad, Ahmad A. ;
Durrenfeld, Philipp ;
Malm, B. Gunnar ;
Rusu, Ana ;
Akerman, Johan .
PROCEEDINGS OF THE IEEE, 2016, 104 (10) :1919-1945
[8]   Integration of GMR-based spin torque oscillators and CMOS circuitry [J].
Chen, Tingsu ;
Eklund, Anders ;
Sani, Sohrab ;
Rodriguez, Saul ;
Malm, B. Gunnar ;
Akerman, Johan ;
Rusu, Ana .
SOLID-STATE ELECTRONICS, 2015, 111 :91-99
[9]   Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators [J].
Demidov, Vladislav E. ;
Urazhdin, Sergei ;
Demokritov, Sergej O. .
NATURE MATERIALS, 2010, 9 (12) :984-988
[10]   Recent Advances in Nanocontact Spin-Torque Oscillators [J].
Dumas, Randy K. ;
Sani, Sohrab R. ;
Mohseni, S. Majid ;
Iacocca, Ezio ;
Pogoryelov, Yevgen ;
Muduli, Pranaba K. ;
Chung, Sunjae ;
Durrenfeld, Philipp ;
Akerman, Johan .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (06)