Directions in hyperbolic lattices

被引:12
作者
Marklof, Jens [1 ]
Vinogradov, Ilya [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2018年 / 740卷
基金
欧洲研究理事会;
关键词
PAIR CORRELATION; EQUIDISTRIBUTION; ANGLES;
D O I
10.1515/crelle-2015-0070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the orbit of a lattice in hyperbolic n-space is uniformly distributed when projected radially onto the unit sphere. In the present work, we consider the fine-scale statistics of the projected lattice points, and express the limit distributions in terms of random hyperbolic lattices. This provides in particular a new perspective on recent results by Boca, Popa, and Zaharescu on 2-point correlations for the modular group, and by Kelmer and Kontorovich for general lattices in dimension n = 2.
引用
收藏
页码:161 / 186
页数:26
相关论文
共 16 条
[1]  
[Anonymous], 1985, Differential Geometry and Complex Analysis: A Volume Dedicated to the Memory of Harry Ernest Rauch, DOI DOI 10.1007/978-3-642-69828-6_5
[2]   Distribution of angles between geodesic rays associated with hyperbolic lattice points [J].
Boca, Florin P. .
QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 :281-295
[3]   Pair correlation of hyperbolic lattice angles [J].
Boca, Florin P. ;
Popa, Alexandru A. ;
Zaharescu, Alexandru .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) :1955-1989
[4]   The Distribution of Directions in an Affine Lattice: Two-Point Correlations and Mixed Moments [J].
El-Baz, Daniel ;
Marklof, Jens ;
Vinogradov, Ilya .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (05) :1371-1400
[5]   MIXING, COUNTING, AND EQUIDISTRIBUTION IN LIE-GROUPS [J].
ESKIN, A ;
MCMULLEN, C .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :181-209
[6]   ON VARIOUS MEANS INVOLVING THE FOURIER COEFFICIENTS OF CUSP FORMS [J].
GOOD, A .
MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) :95-129
[7]  
Good A., 1983, LECT NOTES MATH, V1040
[8]   ON THE PAIR CORRELATION DENSITY FOR HYPERBOLIC ANGLES [J].
Kelmer, Dubi ;
Kontorovich, Alex .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (03) :473-509
[9]  
Margulis GA, 2004, SPRINGER MG MATH, P1
[10]   The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems [J].
Marklof, Jens ;
Strombergsson, Andreas .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1949-2033