A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries

被引:9
作者
Balseiro, Paula [1 ]
Sansonetto, Nicola [2 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, Rua Mario Santos Braga S-N, BR-24020140 Rio De Janeiro, Brazil
[2] Univ Padua, Dipartimento Matemat, Via Trieste 64, I-35121 Padua, Italy
关键词
nonholonomic systems; Lie group symmetries; first integrals; gauge symmetries; and gauge momenta; MECHANICAL SYSTEMS; CONSERVATION-LAWS; NOETHER THEOREM; REDUCTION; HIERARCHY; BRACKETS; BALL;
D O I
10.3842/SIGMA.2016.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of M -cotangent lift of a vector field on a manifold Q in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453-501, arXiv:1301.1091], [Fosse F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579588], and [Fosse F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345-367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Balseiro P., CONSERVED Q IN PRESS
[2]   Reduction of nonholonomic systems in two stages and Hamiltonization [J].
Balseiro, Paula ;
Fernandez, Oscar E. .
NONLINEARITY, 2015, 28 (08) :2873-2912
[3]   The Jacobiator of Nonholonomic Systems and the Geometry of Reduced Nonholonomic Brackets [J].
Balseiro, Paula .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (02) :453-501
[4]   Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems [J].
Balseiro, Paula ;
Garcia-Naranjo, Luis C. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (01) :267-310
[5]  
Bates L., 1996, Reports on Mathematical Physics, V37, P295, DOI 10.1016/0034-4877(96)84069-9
[6]  
Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
[7]  
Benenti S., 2012, MECCANICA SISTEMI AN, P213
[8]  
Bloch A.M., 2003, INTERD APPL, P24
[9]   Nonholonomic mechanical systems with symmetry [J].
Bloch, AM ;
Krishnaprasad, PS ;
Marsden, JE ;
Murray, RM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) :21-99
[10]   Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems [J].
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2008, 13 (05) :443-490