Template-Free Electrochemical Synthesis of Sn Nanofibers as High-Performance Anode Materials for Na-Ion Batteries

被引:128
作者
Nam, Do-Hwan [1 ]
Kim, Tae-Hee [1 ]
Hong, Kyung-Sik [1 ]
Kwon, Hyuk-Sang [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
tin; nanofiber; electrodeposition; Na-ion battery; anode; ONE-DIMENSIONAL NANOSTRUCTURES; HIGH-SPEED ELECTRODEPOSITION; SODIUM-ION; TIN NANOPARTICLES; NANOWIRES; INSERTION; CO;
D O I
10.1021/nn505536t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sn nanofibers with a high aspect ratio are successfully synthesized using a simple electrodeposition process from an aqueous solution without the use of templates. The synthetic approach involves the rapid electrochemical deposition of Sn accompanied by the strong adsorption of Triton X-100, which can function as a growth modifier for the Sn crystallites. Triton X-100 is adsorbed on the {200} crystallographic planes of Sn in an elongated configuration and suppressed the preferential growth of Sn along the [100] direction. Consequently, the Sn electrodeposits are forced to grow anisotropically in a direction normal to the (112) or ((1) over bar 12) plane, forming one-dimensional nanofibers. As electrode materials for the Na-ion batteries, the Sn nanofibers exhibit a high reversible capacity and an excellent cycle performance; the charge capacity is maintained at 776.26 mAh g(-1) after 100 cycles, which corresponds to a retention of 95.09% of the initial charge capacity. The superior electrochemical performance of the Sn nanofibers is mainly attributed to the high mechanical stability of the nanofibers, which originate from highly anisotropic expansion during sodiation and the pore volumes existing between the nanofibers.
引用
收藏
页码:11824 / 11835
页数:12
相关论文
共 55 条
[1]   Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory [J].
Baggetto, Loic ;
Ganesh, P. ;
Meisner, Roberta P. ;
Unocic, Raymond R. ;
Jumas, Jean-Claude ;
Bridges, Craig A. ;
Veith, Gabriel M. .
JOURNAL OF POWER SOURCES, 2013, 234 :48-59
[2]   Cu2Sb thin films as anode for Na-ion batteries [J].
Baggetto, Loic ;
Allcorn, Eric ;
Manthiram, Arumugam ;
Veith, Gabriel M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 :168-171
[3]  
Cao HQ, 2001, ADV MATER, V13, P1393, DOI 10.1002/1521-4095(200109)13:18<1393::AID-ADMA1393>3.0.CO
[4]  
2-C
[5]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[6]   One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials [J].
Choi, Nam-Soon ;
Yao, Yan ;
Cui, Yi ;
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9825-9840
[7]   Tin and graphite based nanocomposites: Potential anode for sodium ion batteries [J].
Datta, Moni Kanchan ;
Epur, Rigved ;
Saha, Partha ;
Kadakia, Karan ;
Park, Sung Kyoo ;
Kuma, Prashant N. .
JOURNAL OF POWER SOURCES, 2013, 225 :316-322
[8]   Reversible Insertion of Sodium in Tin [J].
Ellis, L. D. ;
Hatchard, T. D. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1801-A1805
[9]   SURFACE-ENHANCED RAMAN-SCATTERING OF SURFACTANTS ADSORBED ON SILVER MIRROR SURFACES [J].
FANG, MM ;
HUANG, TJ ;
GU, TR ;
MO, YJ ;
WANG, ZX ;
LI, XY .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1993, 49 (07) :1009-1013
[10]   Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys [J].
Farbod, Behdokht ;
Cui, Kai ;
Kalisvaart, W. Peter ;
Kupsta, Martin ;
Zahiri, Benjamin ;
Kohandehghan, Alireza ;
Lotfabad, Elmira Memarzadeh ;
Li, Zhi ;
Luber, Erik J. ;
Mitlin, David .
ACS NANO, 2014, 8 (05) :4415-4429