Phase field modeling of solidification microstructure evolution during welding

被引:58
作者
Yu, Fengyi [1 ]
Wei, Yanhong [1 ]
Ji, Yanzhou [2 ]
Chen, Long-Qing [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
Preferred crystalline orientation; Morphology evolution; Solidification microstructure; Al-Cu Alloy; Phase field method; DENDRITE GROWTH; DIRECTIONAL SOLIDIFICATION; TRANSIENT CONDITIONS; BINARY ALLOY; MOLTEN POOL; SIMULATION; ORIENTATION; INTERFACE; SELECTION; COLUMNAR;
D O I
10.1016/j.jmatprotec.2017.12.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The misorientation angle between the preferred crystalline orientation and the temperature gradient influences both the incubation time and the average wavelength of any initial instability during the planar growth stage, as well as the dendrite growth direction and the primary dendrite arm spacing during the subsequent epitaxial growth stage. The solidification microstructure gradually changes from normal or tilted dendrites to a seaweed-like structure as the misorientation angle increases. The simulation of the initial wavelength, primary dendrite arm spacing and interface morphology are in general agreement with the experimental observations.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 25 条
[1]   Phase-field simulation of solidification [J].
Boettinger, WJ ;
Warren, JA ;
Beckermann, C ;
Karma, A .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :163-194
[2]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[3]   Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations [J].
Clarke, A. J. ;
Tourret, D. ;
Song, Y. ;
Imhoff, S. D. ;
Gibbs, P. J. ;
Gibbs, J. W. ;
Fezzaa, K. ;
Karma, A. .
ACTA MATERIALIA, 2017, 129 :203-216
[4]   Growth directions of microstructures in directional solidification of crystalline materials [J].
Deschamps, J. ;
Georgelin, M. ;
Pocheau, A. .
PHYSICAL REVIEW E, 2008, 78 (01)
[5]  
Echebarria B, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061604
[6]   Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys [J].
Fallah, V. ;
Amoorezaei, M. ;
Provatas, N. ;
Corbin, S. F. ;
Khajepour, A. .
ACTA MATERIALIA, 2012, 60 (04) :1633-1646
[7]   Phase-field simulation of weld solidification microstructure in an Al-Cu alloy [J].
Farzadi, A. ;
Do-Quang, M. ;
Serajzadeh, S. ;
Kokabi, A. H. ;
Amberg, G. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)
[8]   Orientation dependence of primary dendrite spacing [J].
Gandin, CA ;
Eshelman, M ;
Trivedi, R .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (09) :2727-2739
[9]   A three-dimensional cellular automaton model of dendrite growth with stochastic orientation during the solidification in the molten pool of binary alloy [J].
Gu, C. ;
Wei, Y. ;
Zhan, X. ;
Li, Y. .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2017, 22 (01) :47-58
[10]   Orientation selection in dendritic evolution [J].
Haxhimali, Tomorr ;
Karma, Alain ;
Gonzales, Frederic ;
Rappaz, Michel .
NATURE MATERIALS, 2006, 5 (08) :660-664