Stimuli-responsive nanoparticles for targeting the tumor microenvironment

被引:289
作者
Du, Jinzhi [1 ,2 ,3 ]
Lane, Lucas A. [1 ,2 ,3 ]
Nie, Shuming [1 ,2 ,3 ,4 ]
机构
[1] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Atlanta, GA 30322 USA
[3] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[4] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
基金
美国国家卫生研究院;
关键词
Nanomedicine; Tumor heterogeneity; Tumor microenvironment; pH; Hypoxia; Matrix metalloproteinases; MESOPOROUS SILICA NANOPARTICLES; GENE DELIVERY; POLYMERIC MICELLES; MATRIX METALLOPROTEINASES; MONOCLONAL-ANTIBODIES; CANCER-THERAPY; DRUG-DELIVERY; LIPID-BILAYER; SOLID TUMORS; STEM-CELLS;
D O I
10.1016/j.jconrel.2015.08.050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the most challenging and clinically important goals in nanomedicine is to deliver imaging and therapeutic agents to solid tumors. Here we discuss the recent design and development of stimuli-responsive smart nanoparticles for targeting the common attributes of solid tumors such as their acidic and hypoxic microenvironments. This class of stimuli-responsive nanoparticles is inactive during blood circulation and under normal physiological conditions, but is activated by acidic pH, enzymatic up-regulation, or hypoxia once they extravasate into the tumor microenvironment. The nanoparticles are often designed to first "navigate" the body's vascular system, "dock" at the tumor sites, and then "activate" for action inside the tumor interstitial space. They combine the favorable biodistribution and pharmacokinetic properties of nanodelivery vehicles and the rapid diffusion and penetration properties of smaller drug cargos. By targeting the broad tumor habitats rather than tumor-specific receptors, this strategy has the potential to overcome the tumor heterogeneity problem and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 115 条
[1]  
Abe T, 1997, INT J CANCER, V74, P245, DOI 10.1002/(SICI)1097-0215(19970620)74:3<245::AID-IJC2>3.0.CO
[2]  
2-Z
[3]   Targeting Breast Tumors with pH (Low) Insertion Peptides [J].
Adochite, Ramona-Cosmina ;
Moshnikova, Anna ;
Carlin, Sean D. ;
Guerrieri, Renato A. ;
Andreev, Oleg A. ;
Lewis, Jason S. ;
Reshetnyak, Yana K. .
MOLECULAR PHARMACEUTICS, 2014, 11 (08) :2896-2905
[4]   pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation [J].
An, Ming ;
Wijesinghe, Dayanjali ;
Andreev, Oleg A. ;
Reshetnyak, Yana K. ;
Engelman, Donald M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (47) :20246-20250
[5]   Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo [J].
Andreev, Oleg A. ;
Dupuy, Allison D. ;
Segala, Michael ;
Sandugu, Srikanth ;
Serra, David A. ;
Chichester, Clinton O. ;
Engelman, Donald M. ;
Reshetnyak, Yana K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (19) :7893-7898
[6]   Targeting diseased tissues by pHLIP insertion at low cell surface pH [J].
Andreev, Oleg A. ;
Engelman, Donald M. ;
Reshetnyak, Yana K. .
FRONTIERS IN PHYSIOLOGY, 2014, 5
[7]   pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path [J].
Andreev, Oleg A. ;
Karabadzhak, Alexander G. ;
Weerakkody, Dhammika ;
Andreev, Gregory O. ;
Engelman, Donald M. ;
Reshetnyak, Yana K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4081-4086
[8]   Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs [J].
Andresen, TL ;
Davidsen, J ;
Begtrup, M ;
Mouritsen, OG ;
Jorgensen, K .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) :1694-1703
[9]   Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release [J].
Andresen, TL ;
Jensen, SS ;
Jorgensen, K .
PROGRESS IN LIPID RESEARCH, 2005, 44 (01) :68-97
[10]   Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond [J].
Arvizo, Rochelle R. ;
Miranda, Oscar R. ;
Thompson, Michael A. ;
Pabelick, Christina M. ;
Bhattacharya, Resham ;
Robertson, J. David ;
Rotello, Vincent M. ;
Prakash, Y. S. ;
Mukherjee, Priyabrata .
NANO LETTERS, 2010, 10 (07) :2543-2548