A model for two coupled turbulent fluids Part III:: Numerical approximation by finite elements

被引:21
作者
Bernardi, C
Rebollo, TC
Mármol, MG
Lewandowski, R
Murat, F
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Paris 06, F-75252 Paris 05, France
[4] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
D O I
10.1007/s00211-003-0490-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a scheme for the numerical solution of a model for two turbulent flows with coupling at an interface. We consider a variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 2D flows by piecewise affine triangular elements. Our main contribution is to prove that the standard Galerkin - finite element approximation of the Laplace equation approximates in L-2 norm its solution by transposition, for data with low smoothness. We include some numerical tests for simple geometries that exhibit the behaviour predicted by our analysis.
引用
收藏
页码:33 / 66
页数:34
相关论文
共 19 条
  • [1] [Anonymous], 1965, EQUATIONS ELLIPTIQUE
  • [2] Existence of a solution for a model of two coupled turbulent fluids
    Bernardi, C
    Chacon, T
    Lewandowski, R
    Murat, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (11): : 993 - 998
  • [3] A model for two coupled turbulent fluids part II: Numerical analysis of a spectral discretization
    Bernardi, C.
    Chacón Rebollo, T.
    Lewandowski, R.
    Murat, F.
    [J]. SIAM Journal on Numerical Analysis, 2002, 40 (06) : 2368 - 2394
  • [4] Bernardi C., 2002, STUD MATH APPL, V31, P69
  • [5] NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA
    BOCCARDO, L
    GALLOUET, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) : 149 - 169
  • [6] A 2ND ORDER FINITE DIFFERENCE ANALOG OF FIRST BIHARMONIC BOUNDARY VALUE PROBLEM
    BRAMBLE, JH
    [J]. NUMERISCHE MATHEMATIK, 1966, 9 (03) : 236 - &
  • [7] CHACON T, 1998, NUMER MATH, V79, P283
  • [8] Ciarlet P. G., 1979, FINITE ELEMENT METHO
  • [9] DAUGE M, 1988, LECT NOTES MATH, V1341, P1
  • [10] DUPONT T, 1980, MATH COMPUT, V34, P441, DOI 10.1090/S0025-5718-1980-0559195-7