On the estimation of higher heating value of municipal wastes using soft computing approaches

被引:7
作者
Baghban, Alireza [1 ]
Shamshirband, Shahaboddin [2 ,3 ]
机构
[1] Amirkabir Univ Technol, Chem Engn Dept, Mahshahr Campus, Mahshahr, Iran
[2] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
关键词
Higher heating value; solid waste; combustion; MLP-ANN; LSSVM; PREDICTION; COMBUSTION; OPTIMIZATION; LIQUID; FUELS; MODEL;
D O I
10.1080/15567036.2019.1645764
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High values of higher heating value (HHV) for municipal solid wastes (MSWs) turn them into promising sources of energy nowadays. Accurate prediction of HHV values is investigated using intelligent algorithms of multilayer perceptron artificial neural network (MLP-ANN) and least squares support vector machine (LSSVM). The proposed methods will give the HHV values as a function of different chemical species' mass percentages. These models compared with previously reported correlations. Better performance achieved for the proposed MLP-ANN and LSSVM regarding mean squared error (MSE) values of 0.2325 and 0.000186. Models considered as reliable predictive tools to estimate the HHV values of solid wastes.
引用
收藏
页码:1765 / 1773
页数:9
相关论文
共 27 条
  • [1] Toward reliable model for prediction Drilling Fluid Density at wellbore conditions: A LSSVM model
    Ahmadi, Mohammad Ali
    [J]. NEUROCOMPUTING, 2016, 211 : 143 - 149
  • [2] Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm
    Ahmadi M.A.
    [J]. Journal of Petroleum Exploration and Production Technology, 2011, 1 (2-4) : 99 - 106
  • [3] Neural network based unified particle swarm optimization for prediction of asphaltene precipitation
    Ahmadi, Mohammad Ali
    [J]. FLUID PHASE EQUILIBRIA, 2012, 314 : 46 - 51
  • [4] Ahmadi MA, 2017, INT J AMBIENT ENERGY, V38, P122, DOI 10.1080/01430750.2015.1055515
  • [5] A LSSVM approach for determining well placement and conning phenomena in horizontal wells
    Ahmadi, Mohammad-Ali
    Bahadori, Alireza
    [J]. FUEL, 2015, 153 : 276 - 283
  • [6] Predicting the Heating Value of Municipal Solid Waste-based Materials: An Artificial Neural Network Model
    Akkaya, E.
    Demir, A.
    [J]. ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2010, 32 (19) : 1777 - 1783
  • [7] [Anonymous], 2004, E71187 ASTM INT
  • [8] Prediction of solubility of ammonia in liquid electrolytes using Least Square Support Vector Machines
    Baghban, Alireza
    Bahadori, Mohammad
    Lemraski, Alireza Samadi
    Bahadori, Alireza
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 1303 - 1312
  • [9] Phase equilibrium modelling of natural gas hydrate formation conditions using LSSVM approach
    Baghban, Alireza
    Namvarrechi, Saman
    Le Thi Kim Phung
    Lee, Moonyong
    Bahadori, Alireza
    Kashiwao, Tomoaki
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (16) : 1431 - 1438
  • [10] Estimation of natural gases water content using adaptive neuro-fuzzy inference system
    Baghban, Alireza
    Kashiwao, Tomoaki
    Bahadori, Meysam
    Ahmad, Zainal
    Bahadori, Alireza
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (10) : 891 - 897