Attribute selection using information gain for a fuzzy logic intrusion detection system

被引:1
作者
Gonzalez-Pino, Jesus [1 ]
Edmonds, Janica [1 ]
Papa, Mauricio [1 ]
机构
[1] Univ Tulsa, Ctr Informat Secur, 600 S Coll Ave, Tulsa, OK 74104 USA
来源
DATA MINING, INTRUSION DETECTION, INFORMATION ASSURANCE, AND DATA NETWORKS SECURITY 2006 | 2006年 / 6241卷
关键词
intrusion detection; fuzzy logic; data mining; attribute selection; decision trees;
D O I
10.1117/12.666611
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the modern realm of information technology, data mining and fuzzy logic are often used as effective tools ill the development of novel intrusion detection systems. This paper describes an intrusion detection system that effectively deploys both techniques and uses the concept of information gain to guide the attribute selection process. The advantage of this approach is that it provides a computationally efficient solution that helps reduce the overhead associated with the data mining process. Experimental results obtained with a prototype system implementation show promising opportunities for improving the overall detection performance of our intrusion detection system.
引用
收藏
页数:10
相关论文
共 22 条
[1]  
Agrawal R, 1994, P 20 INT C VER LARG, V1215, P487
[2]  
Bridges S. M., 2000, P 23 NAT INF SYST SE
[3]  
Chan Man Kuok, 1998, SIGMOD Record, V27, P41, DOI 10.1145/273244.273257
[4]  
Chebrolu S, 2004, LECT NOTES COMPUT SC, V3316, P1020
[5]  
Demsar J., Orange: From experimental machine learning to interactive data mining
[6]  
El-Semary A, 2005, IEEE INT CONF FUZZY, P325
[7]  
ELSEMARY A, 2005, P 7 INT C ENT INF SY, P390
[8]  
Fayyad U, 1996, AI MAG, V17, P37
[9]  
FRAWLEY WJ, 1992, AI MAG, V13, P57
[10]  
FRIEDMANHILL EJ, JAVA EXPERT SYSTEM S