Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles

被引:96
作者
Kolsbjerg, E. L. [1 ]
Peterson, A. A. [2 ]
Hammer, B. [1 ]
机构
[1] Aarhus Univ, Interdisciplinaly Nanosci Ctr iNANO, Dept Phys & Astron, Aarhus, Denmark
[2] Brown Univ, Sch Engn, Providence, RI 02912 USA
关键词
POTENTIAL-ENERGY SURFACES; STRUCTURE SENSITIVITY; GLOBAL OPTIMIZATION; GENETIC ALGORITHMS; CLUSTERS; APPROXIMATION; CATALYST; DESIGN; REACTIVITY; CHEMISTRY;
D O I
10.1103/PhysRevB.97.195424
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that approximate structural relaxation with a neural network enables orders of magnitude faster global optimization with an evolutionary algorithm in a density functional theory framework. The increased speed facilitates reliable identification of global minimum energy structures, as exemplified by our finding of a hollow Pt-13 nanoparticle on an MgO support. We highlight the importance of knowing the correct structure when studying the catalytic reactivity of the different particle shapes. The computational speedup further enables screening of hundreds of different pathways in the search for optimum kinetic transitions between low-energy conformers and hence pushes the limits of the insight into thermal ensembles that can be obtained from theory.
引用
收藏
页数:9
相关论文
共 70 条
[1]   Grand canonical molecular dynamics simulations of Cu-Au nanoalloys in thermal equilibrium using reactive ANN potentials [J].
Artrith, Nongnuch ;
Kolpak, Alexie M. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 110 :20-28
[2]   Neural network potentials for metals and oxides - First applications to copper clusters at zinc oxide [J].
Artrith, Nongnuch ;
Hiller, Bjoern ;
Behler, Joerg .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (06) :1191-1203
[3]   High-throughput screening for antiferromagnetic Heusler compounds using density functional theory [J].
Balluff, Jan ;
Diekmann, Kevin ;
Reiss, Guenter ;
Meinert, Markus .
PHYSICAL REVIEW MATERIALS, 2017, 1 (03)
[4]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[5]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[6]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[7]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955
[8]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[9]   Modeling Segregation on AuPd(111) Surfaces with Density Functional Theory and Monte Carlo Simulations [J].
Boes, Jacob R. ;
Kitchin, John R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (06) :3479-3487
[10]   Neural network predictions of oxygen interactions on a dynamic Pd surface [J].
Boes, Jacob R. ;
Kitchin, John R. .
MOLECULAR SIMULATION, 2017, 43 (5-6) :346-354