Interface Engineering of Monolayer MoS2/GaN Hybrid Heterostructure: Modified Band Alignment for Photocatalytic Water Splitting Application by Nitridation Treatment

被引:235
作者
Zhang, Zhaofu [1 ]
Qian, Qingkai [1 ]
Li, Baikui [2 ]
Chen, Kevin J. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
[2] Shenzhen Univ, Coll Optoelect & Comp Engn, Shenzhen 518060, Peoples R China
关键词
nitridation effects; GaN surface; monolayer MoS2; heterostructure photocatalyst; band alignment; SEMICONDUCTORS; PASSIVATION; MOLYBDENUM; DEVICES; DESIGN; DRIVEN;
D O I
10.1021/acsami.8b01286
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N-2 plasma treatment to GaN sample surface prior to stacking monolayer MoS2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS2/GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS2/GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS2 move upward for similar to 0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.
引用
收藏
页码:17419 / 17426
页数:8
相关论文
共 47 条
  • [1] Al Balushi ZY, 2016, NAT MATER, V15, P1166, DOI [10.1038/NMAT4742, 10.1038/nmat4742]
  • [2] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [3] GaN-on-Si Power Technology: Devices and Applications
    Chen, Kevin J.
    Haeberlen, Oliver
    Lidow, Alex
    Tsai, Chun Lin
    Ueda, Tetsuzo
    Uemoto, Yasuhiro
    Wu, Yifeng
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) : 779 - 795
  • [4] Semiconductor-based Photocatalytic Hydrogen Generation
    Chen, Xiaobo
    Shen, Shaohua
    Guo, Liejin
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6503 - 6570
  • [5] Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
  • [6] Photoelectrochemical cells
    Grätzel, M
    [J]. NATURE, 2001, 414 (6861) : 338 - 344
  • [7] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
  • [8] Interface dipole and band bending in the hybrid p-n heterojunction MoS2/GaN(0001)
    Henck, Hugo
    Ben Aziza, Zeineb
    Zill, Olivia
    Pierucci, Debora
    Naylor, Carl H.
    Silly, Mathieu G.
    Gogneau, Noelle
    Oehler, Fabrice
    Collin, Stephane
    Brault, Julien
    Sirotti, Fausto
    Bertran, Francois
    Le Fevre, Patrick
    Berciaud, Stephane
    Johnson, A. T. Charlie
    Lhuillier, Emmanuel
    Rault, Julien E.
    Ouerghi, Abdelkarim
    [J]. PHYSICAL REVIEW B, 2017, 96 (11)
  • [9] Heyd J, 2006, J CHEM PHYS, V124, DOI [10.1063/1.2204597, 10.1063/1.1564060]
  • [10] Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    Hisatomi, Takashi
    Kubota, Jun
    Domen, Kazunari
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) : 7520 - 7535