How DNA Polymerase X Preferentially Accommodates Incoming dATP Opposite 8-Oxoguanine on the Template

被引:8
作者
Benitez, Benedetta Sampoli [1 ]
Barbati, Zachary R. [1 ]
Arora, Karunesh [2 ]
Bogdanovic, Jasmina [1 ]
Schlick, Tamar [3 ,4 ]
机构
[1] Marymt Manhattan Coll, Dept Nat Sci, New York, NY USA
[2] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[3] NYU, Dept Chem, New York, NY 10003 USA
[4] NYU, Courant Inst Math Sci, New York, NY USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SWINE-FEVER VIRUS; INDUCED-FIT MECHANISM; BASE-EXCISION-REPAIR; ACTIVE-SITE; MOLECULAR-DYNAMICS; ERROR-PRONE; VIRAL-DNA; QUANTITATIVE-ANALYSIS; FUNCTIONAL STRUCTURE; DAMAGED DNA;
D O I
10.1016/j.bpj.2013.10.014
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The modified base 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxoG) is a common DNA adduct produced by the oxidation of DNA by reactive oxygen species. Kinetic data reveal that DNA polymerase X (pol X) from the African swine fever virus incorporates adenine (dATP) opposite to oxoG with higher efficiency than the non-damaged G:C basepair. To help interpret the kinetic data, we perform molecular dynamics simulations of pol X/DNA complexes, in which the template base opposite to the incoming dNTP (dCTP, dATP, dGTP) is oxoG. Our results suggest that pol X accommodates the oxoG(syn): A mispair by sampling closed active conformations that mirror those observed in traditional Watson-Crick complexes. Moreover, for both the oxoGsyn: A and oxoG:C ternary complexes, conformational sampling of the polymerase follows previously described large sub-domain movements, local residue motions, and active site reorganization. Interestingly, the oxoGsyn: A system exhibits superior active site geometry in comparison to the oxoG:C system. Simulations for the other mismatch basepair complexes reveal large protein subdomain movement for all systems, except for oxoG:G, which samples conformations close to the open state. In addition, active site geometry and basepairing of the template base with the incoming nucleotide, reveal distortions and misalignments that range from moderate (i.e., oxoG:A(syn)) to extreme (i.e., oxoG(anti/syn):G). These results agree with the available kinetic data for pol X and provide structural insights regarding the mechanism by which this polymerase can accommodate incoming nucleotides opposite oxoG. Our simulations also support the notion that alpha-helix E is involved both in DNA binding and active site stabilization. Our proposed mechanism by which pol X can preferentially accommodate dATP opposite template oxoG further underscores the role that enzyme dynamics and conformational sampling operate in polymerase fidelity and function.
引用
收藏
页码:2559 / 2568
页数:10
相关论文
共 69 条
[51]   Human DNA polymerase lambda is a proficient extender of primer ends paired to 7,8-dihydro-8-oxoguanine [J].
Picher, Angel J. ;
Blanco, Luis .
DNA REPAIR, 2007, 6 (12) :1749-1756
[52]   A comprehensive catalogue of somatic mutations from a human cancer genome [J].
Pleasance, Erin D. ;
Cheetham, R. Keira ;
Stephens, Philip J. ;
McBride, David J. ;
Humphray, Sean J. ;
Greenman, Chris D. ;
Varela, Ignacio ;
Lin, Meng-Lay ;
Ordonez, Gonzalo R. ;
Bignell, Graham R. ;
Ye, Kai ;
Alipaz, Julie ;
Bauer, Markus J. ;
Beare, David ;
Butler, Adam ;
Carter, Richard J. ;
Chen, Lina ;
Cox, Anthony J. ;
Edkins, Sarah ;
Kokko-Gonzales, Paula I. ;
Gormley, Niall A. ;
Grocock, Russell J. ;
Haudenschild, Christian D. ;
Hims, Matthew M. ;
James, Terena ;
Jia, Mingming ;
Kingsbury, Zoya ;
Leroy, Catherine ;
Marshall, John ;
Menzies, Andrew ;
Mudie, Laura J. ;
Ning, Zemin ;
Royce, Tom ;
Schulz-Trieglaff, Ole B. ;
Spiridou, Anastassia ;
Stebbings, Lucy A. ;
Szajkowski, Lukasz ;
Teague, Jon ;
Williamson, David ;
Chin, Lynda ;
Ross, Mark T. ;
Campbell, Peter J. ;
Bentley, David R. ;
Futreal, P. Andrew ;
Stratton, Michael R. .
NATURE, 2010, 463 (7278) :191-U73
[53]   Impact of Conformational Heterogeneity of OxoG Lesions and Their Pairing Partners on Bypass Fidelity by Y Family Polymerases [J].
Rechkoblit, Olga ;
Malinina, Lucy ;
Cheng, Yuan ;
Geacintov, Nicholas E. ;
Broyde, Suse ;
Patel, Dinshaw J. .
STRUCTURE, 2009, 17 (05) :725-736
[54]   Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells [J].
Rojo, G ;
Chamorro, M ;
Salas, ML ;
Viñuela, E ;
Cuezva, JM ;
Salas, J .
JOURNAL OF VIROLOGY, 1998, 72 (09) :7583-7588
[55]   NUMERICAL-INTEGRATION OF CARTESIAN EQUATIONS OF MOTION OF A SYSTEM WITH CONSTRAINTS - MOLECULAR-DYNAMICS OF N-ALKANES [J].
RYCKAERT, JP ;
CICCOTTI, G ;
BERENDSEN, HJC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) :327-341
[56]   Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: Evidence for an induced fit mechanism [J].
Sawaya, MR ;
Prasad, R ;
Wilson, SH ;
Kraut, J ;
Pelletier, H .
BIOCHEMISTRY, 1997, 36 (37) :11205-11215
[57]   Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms [J].
Schlick, Tamar ;
Arora, Karunesh ;
Beard, William A. ;
Wilson, Samuel H. .
THEORETICAL CHEMISTRY ACCOUNTS, 2012, 131 (12) :1-8
[58]   Solution structure of a viral DNA polymerase X and evidence for a mutagenic function [J].
Showalter, AK ;
Byeon, IJL ;
Su, MI ;
Tsai, MD .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (11) :942-946
[59]   Requirement of mammalian DNA polymerase-beta in base-excision repair [J].
Sobol, RW ;
Horton, JK ;
Kuhn, R ;
Gu, H ;
Singhal, RK ;
Prasad, R ;
Rajewsky, K ;
Wilson, SH .
NATURE, 1996, 379 (6561) :183-186
[60]  
Su M.-I., 2004, THESIS OHIO STATE U, P1