On edge-colouring indifference graphs

被引:7
作者
deFigueiredo, CMH [1 ]
Meidanis, J [1 ]
deMello, CP [1 ]
机构
[1] UNIV ESTADUAL CAMPINAS,INST COMP,BR-13081970 CAMPINAS,SP,BRAZIL
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/S0304-3975(96)00264-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Vizing's theorem states that the chromatic index chi'(G) of a graph G is either the maximum degree Delta(G) or Delta(G) + 1. A graph G is called overfull if \E(G)\ > Delta(G)[\V(G)\/2]. A sufficient condition for chi'(G)= Delta(G) + 1 is that G contains an overfull subgraph H with Delta(H)= Delta(G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indifference graphs, this is also true. As supporting evidence, we prove this conjecture for general graphs with three maximal cliques and with no universal vertex, and for indifference graphs with odd maximum degree. For the latter subclass, we prove that chi' = Delta.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 13 条
[1]   NP-COMPLETENESS OF EDGE-COLORING SOME RESTRICTED GRAPHS [J].
CAI, L ;
ELLIS, JA .
DISCRETE APPLIED MATHEMATICS, 1991, 30 (01) :15-27
[2]   A LINEAR-TIME ALGORITHM FOR PROPER INTERVAL GRAPH RECOGNITION [J].
DEFIGUEIREDO, CMH ;
MEIDANIS, J ;
DEMELLO, CP .
INFORMATION PROCESSING LETTERS, 1995, 56 (03) :179-184
[3]  
DEFIGUEIREDO CMH, 1995, CONGRESSUS NUMERANTI, V111, P170
[4]   2 CONJECTURES ON EDGE-COLORING [J].
HILTON, AJW .
DISCRETE MATHEMATICS, 1989, 74 (1-2) :61-64
[5]   THE CHROMATIC INDEX OF COMPLETE MULTIPARTITE GRAPHS [J].
HOFFMAN, DG ;
RODGER, CA .
JOURNAL OF GRAPH THEORY, 1992, 16 (02) :159-163
[6]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[7]  
ORTIZ C, 1994, THESIS COPPE UFRJ RI
[8]  
ORTIZ C, 1996, UNPUB CHARACTERIZING
[9]   ODD MINIMUM CUT-SETS AND B-MATCHINGS [J].
PADBERG, MW ;
RAO, MR .
MATHEMATICS OF OPERATIONS RESEARCH, 1982, 7 (01) :67-80
[10]   THE CHROMATIC INDEX OF GRAPHS WITH A SPANNING STAR [J].
PLANTHOLT, M .
JOURNAL OF GRAPH THEORY, 1981, 5 (01) :45-53