A Nonlinear Dynamic Latent Class Structural Equation Model

被引:15
|
作者
Kelava, Augustin [1 ]
Brandt, Holger [2 ]
机构
[1] Univ Tubingen, Tubingen, Germany
[2] Univ Kansas, Lawrence, KS 66045 USA
关键词
time-series analysis; dynamic structural equation model; intensive longitudinal data; Bayesian methods; MAXIMUM-LIKELIHOOD; BAYESIAN LASSO; EM ALGORITHM; HORSESHOE; ESTIMATOR; MIXTURES; NUMBER; PRIORS; SEM;
D O I
10.1080/10705511.2018.1555692
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we propose a nonlinear dynamic latent class structural equation modeling (NDLC-SEM). It can be used to examine intra-individual processes of observed or latent variables. These processes are decomposed into parts which include individual- and time-specific components. Unobserved heterogeneity of the intra-individual processes are modeled via a latent Markov process that can be predicted by individual- and time-specific variables as random effects. We discuss examples of sub-models which are special cases of the more general NDLC-SEM framework. Furthermore, we provide empirical examples and illustrate how to estimate this model in a Bayesian framework. Finally, we discuss essential properties of the proposed framework, give recommendations for applications, and highlight some general problems in the estimation of parameters in comprehensive frameworks for intensive longitudinal data.
引用
收藏
页码:509 / 528
页数:20
相关论文
共 50 条
  • [21] A Primer on Two-Level Dynamic Structural Equation Models for Intensive Longitudinal Data in Mplus
    McNeish, Daniel
    Hamaker, Ellen L.
    PSYCHOLOGICAL METHODS, 2020, 25 (05) : 610 - 635
  • [22] Fuzzy clustering algorithm for latent class model
    Chin-Tsai Lin
    Chie-Bein Chen
    Wen-Hsiang Wu
    Statistics and Computing, 2004, 14 : 299 - 310
  • [23] Dynamic structural equation models with binary and ordinal outcomes in Mplus
    Daniel McNeish
    Jennifer A. Somers
    Andrea Savord
    Behavior Research Methods, 2024, 56 : 1506 - 1532
  • [24] Fuzzy clustering algorithm for latent class model
    Lin, CT
    Chen, CB
    Wu, WH
    STATISTICS AND COMPUTING, 2004, 14 (04) : 299 - 310
  • [25] Fitting the Longitudinal Actor-Partner Interdependence Model as a Dynamic Structural Equation Model in Mplus
    Savord, Andrea
    McNeish, Daniel
    Iida, Masumi
    Quiroz, Selena
    Ha, Thao
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (02) : 296 - 314
  • [26] A LATENT CLASS VECTOR MODEL FOR PREFERENCE RATINGS
    DESOETE, G
    WINSBERG, S
    JOURNAL OF CLASSIFICATION, 1993, 10 (02) : 195 - 218
  • [27] Dynamic Structural Equation Modeling with Cycles
    Muthen, Bengt
    Asparouhov, Tihomir
    Keijsers, Loes
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2025, 32 (02) : 264 - 286
  • [28] Fitting Structural Equation Model Trees and Latent Growth Curve Mixture Models in Longitudinal Designs: The Influence of Model Misspecification
    Usami, Satoshi
    Hayes, Timothy
    McArdle, John
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2017, 24 (04) : 585 - 598
  • [29] Intensive Longitudinal Data Analyses With Dynamic Structural Equation Modeling
    Zhou, Le
    Wang, Mo
    Zhang, Zhen
    ORGANIZATIONAL RESEARCH METHODS, 2021, 24 (02) : 219 - 250
  • [30] BayesLCA: An R Package for Bayesian Latent Class Analysis
    White, Arthur
    Murphy, Thomas Brendan
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (13): : 1 - 28