A synapsin I cleavage fragment contributes to synaptic dysfunction in Alzheimer's disease

被引:12
|
作者
Meng, Lanxia [1 ]
Zou, Li [1 ,2 ]
Xiong, Min [1 ]
Chen, Jiehui [1 ]
Zhang, Xingyu [1 ]
Yu, Ting [1 ]
Li, Yiming [1 ]
Liu, Congcong [1 ]
Chen, Guiqin [1 ,3 ]
Wang, Zhihao [1 ]
Ye, Keqiang [3 ]
Zhang, Zhentao [1 ]
机构
[1] Wuhan Univ, Dept Neurol, Renmin Hosp, Wuhan 430060, Peoples R China
[2] Wuhan Univ, Dept Neurol, Zhongnan Hosp, Wuhan, Peoples R China
[3] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
基金
中国国家自然科学基金;
关键词
Alzheimer's disease; asparagine endopeptidase; synapsin I; synaptic dysfunction; NEUROFIBRILLARY PATHOLOGY; COGNITIVE DECLINE; DELTA-SECRETASE; PROTEINS; ACTIVATION; EXPRESSION; DEMENTIA; LEGUMAIN; ACIDOSIS; CORTEX;
D O I
10.1111/acel.13619
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Synaptic dysfunction is a key feature of Alzheimer's disease (AD). However, the molecular mechanisms underlying synaptic dysfunction remain unclear. Here, we show that synapsin I, one of the most important synaptic proteins, is fragmented by the cysteine proteinase asparagine endopeptidase (AEP). AEP cleaves synapsin at N82 in the brains of AD patients and generates the C-terminal synapsin I (83-705) fragment. This fragment is abnormally distributed in neurons and induces synaptic dysfunction. Overexpression of AEP in the hippocampus of wild-type mice results in the production of the synapsin I (83-705) fragment and induces synaptic dysfunction and cognitive deficits. Moreover, overexpression of the AEP-generated synapsin I (83-705) fragment in the hippocampus of tau P301S transgenic mice and wild-type mice promotes synaptic dysfunction and cognitive deficits. These findings suggest a novel mechanism of synaptic dysfunction in AD.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A γ-adducin cleavage fragment induces neurite deficits and synaptic dysfunction in Alzheimer's disease
    Xiong, Min
    Zou, Li
    Meng, Lanxia
    Zhang, Xingyu
    Tian, Ye
    Zhang, Guoxin
    Yang, Jiaolong
    Chen, Guiqin
    Xiong, Jing
    Ye, Keqiang
    Zhang, Zhentao
    PROGRESS IN NEUROBIOLOGY, 2021, 203
  • [2] Alzheimer's disease: synaptic dysfunction and Aβ
    Shankar, Ganesh M.
    Walsh, Dominic M.
    MOLECULAR NEURODEGENERATION, 2009, 4
  • [3] Synaptic Dysfunction in Alzheimer's Disease
    Marcello, Elena
    Epis, Roberta
    Saraceno, Claudia
    Di Luca, Monica
    SYNAPTIC PLASTICITY: DYNAMICS, DEVELOPMENT AND DISEASE, 2012, 970 : 573 - 601
  • [4] Alzheimer's disease: synaptic dysfunction and Aβ
    Ganesh M Shankar
    Dominic M Walsh
    Molecular Neurodegeneration, 4
  • [5] The Role of Synaptic Dysfunction in Alzheimer's Disease
    Pei, Yixuan
    Davies, Julie
    Zhang, Melanie
    Zhang, Han-Ting
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 76 (01) : 49 - 62
  • [6] Alzheimer's disease:: Aβ, tau and synaptic dysfunction
    LaFerla, FM
    Oddo, S
    TRENDS IN MOLECULAR MEDICINE, 2005, 11 (04) : 170 - 176
  • [7] Interaction between NH2-tau fragment and Aβ in Alzheimer's disease mitochondria contributes to the synaptic deterioration
    Amadoro, Giuseppina
    Corsetti, Veronica
    Atlante, Anna
    Florenzano, Fulvio
    Capsoni, Simona
    Bussani, Rossana
    Mercanti, Delio
    Calissano, Pietro
    NEUROBIOLOGY OF AGING, 2012, 33 (04)
  • [8] Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease
    Cabezas-Opazo, Fabian A.
    Vergara-Pulgar, Katiana
    Jose Perez, Maria
    Jara, Claudia
    Osorio-Fuentealba, Cesar
    Quintanilla, Rodrigo A.
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2015, 2015
  • [9] Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease
    Tu, Shichun
    Okamoto, Shu-ichi
    Lipton, Stuart A.
    Xu, Huaxi
    MOLECULAR NEURODEGENERATION, 2014, 9 : 48
  • [10] Targeting Synaptic Dysfunction in Alzheimer’s Disease Therapy
    Robert Nisticò
    Marco Pignatelli
    Sonia Piccinin
    Nicola B. Mercuri
    Graham Collingridge
    Molecular Neurobiology, 2012, 46 : 572 - 587