NUMERICAL RANGE AND ORTHOGONALITY IN NORMED SPACES

被引:4
作者
Bachir, A. [1 ]
Segres, A. [2 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Math, Abha, Saudi Arabia
[2] Mascara Univ, Dept Math, Mascara, Algeria
关键词
Normed space; Normalized duality mapping; Birkhoff-James orthogonality; Numerical range; Maximal numerical range; Norm of elementary operator; C-STAR-ALGEBRA; 2; DERIVATIONS; PRODUCT;
D O I
10.2298/FIL0901021B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Introducing the concept of the normalized duality mapping on normed linear space and normed algebra, we extend the usual definitions of the numerical range from one operator to two operators. In this note we study the convexity of these types of numerical ranges in normed algebras and linear spaces. We establish some Birkhoff-James orthogonality results in terms of the algebra numerical range V(T)(A) which generalize those given by J.P. William and J.P. Stamplfli. Finally, we give a positive answer of the Mathieu's question.
引用
收藏
页码:21 / 41
页数:21
相关论文
共 20 条
[1]  
[Anonymous], T AM MATH SOC
[2]  
[Anonymous], T AM MATH SOC
[3]  
Bauer F.L.:., 1962, Numer. Math, V4, P103
[4]  
Beauzamy B., 1982, INTRO BANACH SPACES, V68
[5]  
Birkhoff G., 1935, Duke Math. J., V1, P169, DOI [10.1215/S0012-7094-35-00115-6. h17i, DOI 10.1215/S0012-7094-35-00115-6.H17I]
[6]  
Bonsall F. F., 1971, LOND MATH SOC LECT N, V2
[7]  
Bonsall F. F., 1973, NUMERICAL RANGES, VII
[8]   NUMERICAL RANGE OF AN ELEMENT OF A NORMED ALGEBRA [J].
BONSALL, FF .
GLASGOW MATHEMATICAL JOURNAL, 1969, 10 :68-&
[9]  
DIESTEL J, GRADUATE TEXTS MATH, P92
[10]  
Dragomir SS., 2004, Semi-Inner Products and Applications