A MAVEN Case Study of Radial IMF at Mars: Impacts on the Dayside Ionosphere

被引:20
作者
Fowler, C. M. [1 ]
Hanley, K. G. [2 ]
McFadden, J. [2 ]
Halekas, J. [3 ]
Schwartz, S. J. [4 ]
Mazelle, C. [5 ]
Chaffin, M. [4 ]
Mitchell, D. [2 ]
Espley, J. [6 ]
Ramstad, R. [4 ]
Dong, Y. [4 ]
Curry, S. [2 ]
机构
[1] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[4] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[5] Univ Toulouse, IRAP, CNRS, UPS,CNES, Toulouse, France
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
关键词
Mars solar wind interaction; Mars radial IMF; Mars ionosphere; ION COMPOSITION BOUNDARY; SOLAR-WIND INTERACTION; QUASI-PARALLEL SHOCK; AMPLITUDE ULF WAVES; MAGNETOSONIC WAVES; MARTIAN MAGNETOSPHERE; PLASMA ENVIRONMENT; DIAMAGNETIC CAVITY; UPPER-ATMOSPHERE; BOW SHOCK;
D O I
10.1029/2022JA030726
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solar wind interaction with Mars controls the transfer of energy and momentum from the solar wind into the magnetosphere, ionosphere and atmosphere, driving structure, and dynamics within each. This interaction is highly dependent on the upstream Interplanetary Magnetic Field (IMF) orientation. We use in-situ plasma measurements made by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to identify several prominent features that arise when the IMF is aligned approximately parallel or antiparallel to solar wind flow (conditions known as "radial IMF"). In particular, solar wind protons and alphas are observed to directly penetrate down to periapsis altitudes, while the magnetic barrier forms deep within the dayside ionosphere. The MAVEN observations are consistent with either an ionopause-like boundary or diamagnetic cavity forming beneath the barrier, as a consequence of the dense cold ionosphere and the absence of significant crustal magnetic fields at this periapsis location. The planetary ions above the magnetic barrier are exposed to solar wind flow and subsequent mass-loading. The (V) over right arrow x (B) over right arrow (convective electric field or "ion pickup") force is weak and highly variable during radial IMF. While wave particle interactions and subsequent wave heating contribute to incorporating the heavy planetary ions into the solar wind flow, the solar wind momentum is not fully deflected around the obstacle and is delivered into the collisional atmosphere. Significant ion heating is observed deep within the dayside ionosphere, and observed ionospheric density and temperature profiles demonstrate that these ion energization mechanisms drive significant erosion and likely escape to space.
引用
收藏
页数:21
相关论文
共 101 条
[1]   Micro-Scale Plasma Instabilities in the Interaction Region of the Solar Wind and the Martian Upper Atmosphere [J].
Akbari, Hassanali ;
Newman, David ;
Fowler, Christopher ;
Pfaff, Robert ;
Andersson, Laila ;
Malaspina, David ;
Schwartz, Steven ;
Ergun, Robert ;
McFadden, James ;
Mitchell, David ;
Halekas, Jasper ;
Rowland, Douglas .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (05)
[2]   The Langmuir Probe and Waves (LPW) Instrument for MAVEN [J].
Andersson, L. ;
Ergun, R. E. ;
Delory, G. T. ;
Eriksson, A. ;
Westfall, J. ;
Reed, H. ;
McCauly, J. ;
Summers, D. ;
Meyers, D. .
SPACE SCIENCE REVIEWS, 2015, 195 (1-4) :173-198
[3]   Quasi-perpendicular shock structure and processes [J].
Bale, SD ;
Balikhin, MA ;
Horbury, TS ;
Krasnoselskikh, VV ;
Kucharek, H ;
Möbius, E ;
Walker, SN ;
Balogh, A ;
Burgess, D ;
Lembège, B ;
Lucek, EA ;
Scholer, M ;
Schwartz, SJ ;
Thomsen, MF .
SPACE SCIENCE REVIEWS, 2005, 118 (1-4) :161-203
[4]   First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer [J].
Benna, M. ;
Mahaffy, P. R. ;
Grebowsky, J. M. ;
Fox, J. L. ;
Yelle, R. V. ;
Jakosky, B. M. .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (21) :8958-8965
[5]   Structure of the magnetic pileup boundary at Mars and Venus -: art. no. A01209 [J].
Bertucci, C ;
Mazelle, C ;
Acuña, MH ;
Russell, CT ;
Slavin, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A1)
[6]   Magnetic field draping enhancement at Venus:: Evidence for a magnetic pileup boundary -: art. no. 1876 [J].
Bertucci, C ;
Mazelle, C ;
Slavin, JA ;
Russell, CT ;
Acuña, MH .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (17)
[7]   Temporal variability of waves at the proton cyclotron frequency upstream from Mars: Implications for Mars distant hydrogen exosphere [J].
Bertucci, C. ;
Romanelli, N. ;
Chaufray, J. Y. ;
Gomez, D. ;
Mazelle, C. ;
Delva, M. ;
Modolo, R. ;
Gonzalez-Galindo, F. ;
Brain, D. A. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (15) :3809-3813
[8]   The Induced Magnetospheres of Mars, Venus, and Titan [J].
Bertucci, C. ;
Duru, F. ;
Edberg, N. ;
Fraenz, M. ;
Martinecz, C. ;
Szego, K. ;
Vaisberg, O. .
SPACE SCIENCE REVIEWS, 2011, 162 (1-4) :113-171
[9]   Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations -: art. no. 1099 [J].
Bertucci, C ;
Mazelle, C ;
Crider, DH ;
Vignes, D ;
Acuña, MH ;
Mitchell, DL ;
Lin, RP ;
Connerney, JEP ;
Rème, H ;
Cloutier, PA ;
Ness, NF ;
Winterhalter, D .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (02) :71-1
[10]   Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere [J].
Bougher, S. W. ;
Pawlowski, D. ;
Bell, J. M. ;
Nelli, S. ;
McDunn, T. ;
Murphy, J. R. ;
Chizek, M. ;
Ridley, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2015, 120 (02) :311-342