Ship Detection: An Improved YOLOv3 Method

被引:3
作者
Cui, Haiying [1 ]
Yang, Yang [1 ]
Liu, Mingyong [1 ]
Shi, Tingchao [1 ]
Qi, Qian [1 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Engn, Xian, Peoples R China
来源
OCEANS 2019 - MARSEILLE | 2019年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/oceanse.2019.8867209
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
YOLOv3 is the state of art detector, which performs an excellent balance in detection speed and accuracy. In this paper, an improved YOLOv3 model named YOLOv3-ship is proposed for the ship detection. The main contributions to the YOLOv3-ship consists of dimension Clusters, network Improvement and embedding of the Squeeze-and-Excitation(SE) module. The experiments results show that the detection accuracy has been significantly improved by the YOLOv3-ship.
引用
收藏
页数:4
相关论文
共 8 条
  • [1] Farhadi A., 2018, YOLOV3 INCREMENTAL I, P1
  • [2] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [3] He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
  • [4] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
  • [5] Joseph RK, 2016, CRIT POL ECON S ASIA, P1
  • [6] REDMON J, 2016, PROC CVPR IEEE, P779, DOI [DOI 10.1109/CVPR.2016.91, 10.1109/CVPR.2016.91]
  • [7] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Ren, Shaoqing
    He, Kaiming
    Girshick, Ross
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1137 - 1149
  • [8] Shao, 2018, IEEE T MULTIMEDIA, V20