CO2 selectivity of flower-like MoS2 grown on TiO2 nanofibers coated with acetic acid-treated graphitic carbon nitride

被引:31
作者
Kang, Suhee [1 ]
Khan, Haritham [1 ]
Lee, Caroline Sunyong [1 ]
机构
[1] Hanyang Univ, Dept Mat & Chem Engn, Seoul, South Korea
关键词
TiO2; nanofibers; MoS2; Graphitic carbon nitride; Photocatalytic CO2 reduction; CO2; selectivity; adsorption; S-scheme; POROUS G-C3N4; REDUCTION; NANOSHEETS; HETEROSTRUCTURES; PHOTOCATALYSTS; NANOCOMPOSITES; NANOPARTICLES; GRAPHENE; CATALYST; DIOXIDE;
D O I
10.1016/j.solmat.2020.110890
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Activated CO2 adsorption sites are crucial for improving selectivity in photocatalytic CO2 reduction. Co-catalysts incorporating rare or noble metals have previously been required to achieve high CO2 selectivity (S-CO2); thus, noble-metal-free catalysts with high S-CO2 are desirable but challenging to realize. We introduced S-scheme heterojunction using noble-metal-free TiO2/MoS2/graphitic carbon nitride (g-C3N4) with a strong redox ability showing S-CO2 > 90%. This heterostructure improved CO2 conversion, to levels 3.1 times higher than that of the g-C3N4 alone and exhibited sufficient kinetic overpotential (0.18 eV) to produce significant amounts of CH4. When the proportion of g-C3N4 was optimized, the specified TiO2/MoS2/g-C3N4 achieved high S-CO2 (similar to 90%) due to its improved CO2 adsorption, in turn due to the improved specific surface area and pore size distribution attributable to amino (-NH2) groups of g-C3N4 We introduced, a novel, noble-metal-free TiO2/MoS2/g-C3N4 heterostructure that maximizes the number of CO2 adsorption sites and charge carriers separation through interconnected components, and thus increases S-CO2.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion [J].
Aguirre, Matias E. ;
Zhou, Ruixin ;
Eugene, Alexis J. ;
Guzman, Marcelo I. ;
Grela, Maria A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :485-493
[2]  
Alcudia-Ramos M.A., 2020, PRIME, V46, P38
[3]   Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2 [J].
Ali, Asghar ;
Biswas, Md Rokon Dowla ;
Areerob, Yonrapach ;
Dinh Cung Tien Nguyen ;
Oh, Won-Chun .
JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2018, 55 (04) :381-391
[4]  
[Anonymous], 2013, ANGEW CHEM INT ED
[5]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[6]   Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation [J].
Chen, Jie ;
Shen, Shaohua ;
Guo, Penghui ;
Wu, Po ;
Guo, Liejin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) :4605-4612
[7]   Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode [J].
Choi, Dahyun ;
Park, Yoonchan ;
Lee, Minji ;
Kim, Kwangmin ;
Choi, Jung-Oh ;
Lee, Caroline Sunyong .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2018, 5 (05) :643-650
[8]   Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation [J].
Crake, Angus ;
Christoforidis, Konstantinos C. ;
Godin, Robert ;
Moss, Benjamin ;
Kafizas, Andreas ;
Zafeiratos, Spyridon ;
Durrant, James R. ;
Petit, Camille .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 242 :369-378
[9]   Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction [J].
Di, Jun ;
Zhu, Chao ;
Ji, Mengxia ;
Duan, Meilin ;
Long, Ran ;
Yan, Cheng ;
Gu, Kaizhi ;
Xiong, Jun ;
She, Yuanbin ;
Xia, Jiexiang ;
Li, Huaming ;
Liu, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (45) :14847-14851
[10]  
Duan Z, 2019, SCI REP