Computing redox potentials in solution: Density functional theory as a tool for rational design of redox agents

被引:380
作者
Baik, MH
Friesner, RA [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Columbia Univ, Ctr Biomol Simulat, New York, NY 10027 USA
关键词
D O I
10.1021/jp025853n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-level density functional theory in combination with a continuum solvation model was employed to compute standard redox potentials in solution phase for three different classes of electrochemically active molecules: small organic molecules, metallocenes, and M(bpy)(3)(x) (M = Fe, Ru, Os; x = +3, +2, +1, 0, -1). Excellent agreement with experimentally determined redox potentials is found with an average deviation of approximately 150 mV when four different solvents commonly in use for electrochemical measurements were included. To obtain quantitative agreement-between theory and experiment, the use of a large basis set is crucial especially when the redox couple includes anionic species. Whereas the addition of diffuse functions improved the results notably, vibrational zero-point-energy corrections and addition of entropy effects are less important. The computational protocol for computing redox potentials in solution, which has been benchmarked, is a powerful and novel tool that will allow a molecular-level understanding of the features dictating the properties of redox-active species.
引用
收藏
页码:7407 / 7412
页数:6
相关论文
共 41 条
[1]  
Antelman MS, 1982, ENCY CHEM ELECTRODE
[2]  
Astruc D., 1995, ELECT TRANSFER RADIC
[3]   Using density functional theory to design DNA base analogues with low oxidation potentials [J].
Baik, MH ;
Silverman, JS ;
Yang, IV ;
Ropp, PA ;
Szalai, VA ;
Yang, WT ;
Thorp, HH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (27) :6437-6444
[4]   Density functional theory study of redox pairs. 1. Dinuclear iron complexes that undergo multielectron redox reactions accompanied by a reversible structural change [J].
Baik, MH ;
Ziegler, T ;
Schauer, CK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (38) :9143-9154
[5]   Luminescent and redox-active polynuclear transition metal complexes [J].
Balzani, V ;
Juris, A ;
Venturi, M ;
Campagna, S ;
Serroni, S .
CHEMICAL REVIEWS, 1996, 96 (02) :759-833
[6]  
Bard A. J., 1980, ELECTROCHEMICAL METH
[7]  
Bard A. J., 1985, STANDARD POTENTIALS
[8]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[9]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[10]   Implicit solvation models: Equilibria, structure, spectra, and dynamics [J].
Cramer, CJ ;
Truhlar, DG .
CHEMICAL REVIEWS, 1999, 99 (08) :2161-2200