Attention based spatiotemporal graph attention networks for traffic flow forecasting

被引:74
|
作者
Wang, Yi [1 ]
Jing, Changfeng [1 ]
Xu, Shishuo [1 ]
Guo, Tao [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomatics & Urban Spatial Informat, Beijing, Peoples R China
[2] Sichuan Acad Agr Sci, Inst Remote Sensing Applicat, Chengdu 610066, Peoples R China
基金
北京市自然科学基金;
关键词
Traffic flow forecasting; Spatiotemporal graph neural network; Network deepening; Network degradation; Dynamic spatiotemporal correlation; Intelligent transportation systems; CONVOLUTIONAL NETWORK; PREDICTION; SYSTEM;
D O I
10.1016/j.ins.2022.05.127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow forecasting is a crucial task in transportation and necessary for congestion mitigation, traffic control, and intelligent traffic management. Deep learning models can aid in high-accuracy traffic flow forecasting; however, the current research focuses only the ability of the model to capture dynamic spatiotemporal features, and studies on the effect of deeper network layers on spatiotemporal features-a critical factor affecting traffic flow forecasting accuracy-are limited. In this paper, we propose an attention-based spatiotemporal graph attention network (ASTGAT) model designed for network degradation and over-smoothing problems to investigate in-depth spatiotemporal information. Compared to other networks, ASTGAT can capture dynamic spatiotemporal correlations in data and deepen the network to improve prediction accuracy through multiple residual convolution and high-low feature concat. ASTGAT comprises three components that separately model the temporal relationships of the recent, daily, and weekly periods. Each component stacks multiple spatiotemporal blocks constructed using the attention mechanism, dilated gated convolution, and graph attention network. The graph and temporal attention layers capture spatiotemporal information dynamically, and the graph attention layer alleviates the over-smoothing phenomenon to deepen the network. The combined utilization of the attention mechanism and dilated gated convolution layer improves the medium and long temporal span prediction ability. We validated ASTGAT using two open highway data sets, and the results demonstrated that our ASTGAT model effectively extracts in-depth spatiotemporal information and the prediction results outperform those predicted by the current eight baselines. Our research is dedicated to establishing a better scientific basis for intelligent traffic management that can assist in decision making.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:869 / 883
页数:15
相关论文
共 50 条
  • [31] Attention-Based Gated Recurrent Graph Convolutional Network for Short-Term Traffic Flow Forecasting
    Lou, Ping
    Wu, Zihao
    Hu, Jiwei
    Liu, Quan
    Wei, Qin
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [32] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [33] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [34] Multi-attention gated temporal graph convolution neural Network for traffic flow forecasting
    Huang, Xiaohui
    Wang, Junyang
    Jiang, Yuan
    Lan, Yuanchun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 13795 - 13808
  • [35] Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction
    Chen, Jian
    Zheng, Li
    Hu, Yuzhu
    Wang, Wei
    Zhang, Hongxing
    Hu, Xiping
    INFORMATION FUSION, 2024, 104
  • [36] An Improved Model Combining Outlook Attention and Graph Embedding for Traffic Forecasting
    Zhang, Jin
    Liu, Yuanyuan
    Gui, Yan
    Ruan, Chang
    SYMMETRY-BASEL, 2023, 15 (02):
  • [37] DAGCAN: Decoupled Adaptive Graph Convolution Attention Network for Traffic Forecasting
    Yuan, Qing
    Wang, Junbo
    Han, Yu
    Liu, Zhi
    Liu, Wanquan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (03) : 3513 - 3526
  • [38] Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting
    Wei, Siwei
    Yang, Yang
    Liu, Donghua
    Deng, Ke
    Wang, Chunzhi
    ELECTRONICS, 2024, 13 (16)
  • [39] Graph transformer based dynamic multiple graph convolution networks for traffic flow forecasting
    Hu, Yongli
    Peng, Ting
    Guo, Kan
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (09) : 1835 - 1845
  • [40] Multi-graph representation spatio-temporal attention networks for traffic forecasting in the cinematic metaverse
    Li, Ke
    He, Xiaoming
    Liu, Yinqiu
    Chen, Meng
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):