Channel Estimation for Orthogonal Time Frequency Space (OTFS) Massive MIMO

被引:323
作者
Shen, Wenqian [1 ]
Dai, Linglong [2 ]
An, Jianping [1 ]
Fan, Pingzhi [3 ]
Heath, Robert W., Jr. [4 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Southwest Jiaotong Univ, Inst Mobile Commun, Chengdu 610031, Sichuan, Peoples R China
[4] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
OTFS; massive MIMO; channel estimation; high-mobility; sparsity; INTERCARRIER INTERFERENCE; TRAINING OFDM; EQUALIZATION; CANCELLATION; SYSTEMS; COMMUNICATION; PERFORMANCE; SCHEME;
D O I
10.1109/TSP.2019.2919411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Orthogonal time frequency space (OTFS) modulation outperforms orthogonal frequency division multiplexing (OFDM) in high-mobility scenarios. One challenge forOTFSmassiveMIMO is downlink channel estimation due to the large number of base station antennas. In this paper, we propose a 3D-structured orthogonal matching pursuit algorithm based channel estimation technique to solve this problem. First, we show that the OTFS MIMO channel exhibits 3D-structured sparsity: normal sparsity along the delay dimension, block sparsity along the Doppler dimension, and burst sparsity along the angle dimension. Based on the 3D-structured channel sparsity, we then formulate the downlink channel estimation problem as a sparse signal recovery problem. Simulation results show that the proposed algorithm can achieve accurate channel state information with low pilot overhead.
引用
收藏
页码:4204 / 4217
页数:14
相关论文
共 49 条
[1]  
3GPP, 2014, 3GPP,Tech. Rep. TR 25.996 V12.0.0
[2]   Challenges Toward Wireless Communications for High-Speed Railway [J].
Ai, Bo ;
Cheng, Xiang ;
Kuerner, Thomas ;
Zhong, Zhang-Dui ;
Guan, Ke ;
He, Rui-Si ;
Xiong, Lei ;
Matolak, David W. ;
Michelson, David G. ;
Briso-Rodriguez, Cesar .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (05) :2143-2158
[3]  
[Anonymous], 2017, IEEE WCNC
[4]  
[Anonymous], 2005, document TR 25.996
[5]  
[Anonymous], 2018, P 2018 IEEE GLOB COM
[6]   Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels [J].
Bajwa, Waheed U. ;
Haupt, Jarvis ;
Sayeed, Akbar M. ;
Nowak, Robert .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :1058-1076
[7]  
Bello P., 1963, IEEE Transactions on Communications Systems, V11, P360, DOI DOI 10.1109/TCOM.1963.1088793
[8]   Bounding performance and suppressing intercarrier interference in wireless mobile OFDM [J].
Cai, XD ;
Giannakis, GB .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (12) :2047-2056
[9]   Structured Turbo Compressed Sensing for Massive MIMO Channel Estimation Using a Markov Prior [J].
Chen, Lei ;
Liu, An ;
Yuan, Xiaojun .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (05) :4635-4639
[10]   Channel Estimation for OFDM Systems over Doubly Selective Channels: A Distributed Compressive Sensing Based Approach [J].
Cheng, Peng ;
Chen, Zhuo ;
Rui, Yun ;
Guo, Y. Jay ;
Gui, Lin ;
Tao, Meixia ;
Zhang, Q. T. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (10) :4173-4185