Uniqueness of the multiplicative cyclotomic trace

被引:29
作者
Blumberg, Andrew J. [1 ]
Gepner, David [2 ]
Tabuada, Goncalo [3 ,4 ,5 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] FCT UNL, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
[5] FCT UNL, CMA, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Higher algebraic K-theory; Stable infinity-categories; Spectral categories; Topological cyclic homology; Cyclotomic trace map; ALGEBRAIC K-THEORY; TOPOLOGICAL CYCLIC HOMOLOGY; MODEL CATEGORIES; HOCHSCHILD HOMOLOGY; SYMMETRIC SPECTRA; HOMOTOPY-THEORY; DG-CATEGORIES; SPACES; COMPLEXES; DUALITY;
D O I
10.1016/j.aim.2014.02.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Making use of the theory of noncommutative motives, we characterize the topological Dennis trace map as the unique multiplicative natural transformation from algebraic K-theory to topological Hochschild homology (THH) and the cyclotomic trace map as the unique multiplicative lift through topological cyclic homology (TC). Moreover, we prove that the space of all multiplicative structures on algebraic K-theory is contractible. We also show that the algebraic K-theory functor from small stable infinity-categories to spectra is lax symmetric monoidal, which in particular implies that E-n ring spectra give rise to E(n-1)ring algebraic K-theory spectra. Along the way, we develop a "multiplicative Morita theory", establishing a symmetric monoidal equivalence between the no-category of small idempotent-complete stable no-categories and the Morita localization of the infinity-category of spectral categories. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 232
页数:42
相关论文
共 54 条
[1]  
aldhausen F. W, 1978, LECT NOTES MATH, V763
[2]  
[Anonymous], 1990, Progr. Math.
[3]  
[Anonymous], 1999, P S PURE MATH
[4]  
Barwick C., ARXIV13044867
[5]   INTEGRAL TRANSFORMS AND DRINFELD CENTERS IN DERIVED ALGEBRAIC GEOMETRY [J].
Ben-Zvi, David ;
Francis, John ;
Nadler, David .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (04) :909-966
[6]  
Berger C., ARXIV12012134
[7]  
Berger C., 2002, COMMENT MATH HELV, V78
[8]   A model category structure on the category of simplicial categories [J].
Bergner, Julia E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2043-2058
[9]  
Bergner JE, 2010, IMA VOL MATH APPL, V152, P69, DOI 10.1007/978-1-4419-1524-5_2
[10]  
Blumberg A.J., ARXIV13031694