Data sharpening as a prelude to density estimation

被引:52
作者
Choi, E [1 ]
Hall, P [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
关键词
bandwidth; bias reduction; kernel density estimation; Nadaraya-Watson estimator; nonparametric density estimation; orthogonal series; ridge estimation;
D O I
10.1093/biomet/86.4.941
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a data-perturbation method for reducing bias of a wide variety of density estimators, in univariate, multivariate spatial and spherical data settings. The method involves 'sharpening' the data by making them slightly more clustered than before, and then computing the estimator in the usual way, but from the sharpened data rather than the original data. The transformation depends in a simple, explicit way on the smoothing parameter employed for the density estimator, which may be based on classical kernel methods, orthogonal series, histosplines, singular integrals or other linear or approximately-linear methods. Bias is reduced by an order of magnitude, at the expense of a constant-factor increase in variance.
引用
收藏
页码:941 / 947
页数:7
相关论文
共 22 条
[1]  
ABRAMSON IS, 1982, ANN STAT, V9, P168
[2]  
FWU C, 1981, P 26 C DES EXP ARM R, P309
[3]   VARIABLE WINDOW WIDTH KERNEL ESTIMATES OF PROBABILITY DENSITIES [J].
HALL, P ;
MARRON, JS .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (01) :37-49
[5]   ON THE BIAS OF VARIABLE BANDWIDTH CURVE ESTIMATORS [J].
HALL, P .
BIOMETRIKA, 1990, 77 (03) :529-535
[6]  
HALL P, 1999, PROBAB THEORY REL, V91, P34
[7]  
Hart J. D., 1997, NONPARAMETRIC SMOOTH
[8]  
Jones M.C., 1990, AUSTR NZ J STAT, V32, P361
[9]  
JONES MC, 1994, ANN I STAT MATH, V46, P521
[10]   A comparison of higher-order bias kernel density estimators [J].
Jones, MC ;
Signorini, DF .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) :1063-1073