Explicit L-functions and a Brauer-Siegel theorem for Hessian elliptic curves

被引:0
作者
Griffon, Richard [1 ]
机构
[1] Leiden Univ, Math Inst, Postbus 9512, NL-2300 RA Leiden, Netherlands
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2018年 / 30卷 / 03期
关键词
Elliptic curves over function fields; Explicit computation of L-functions; Special values of L-functions and BSD conjecture; Estimates of special values; Analogue of the Brauer-Siegel theorem; ABELIAN-VARIETIES; POINTS; ANALOG; RANK;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite field F-q of characteristic p >= 5 and K = F-q(t), we consider the family of elliptic curves E-d over K given by y(2) + xy - t(d)y = x(3) for all integers d coprime to q. We provide an explicit expression for the L-functions of these curves. Moreover, we deduce from this calculation that the curves E-d satisfy an analogue of the Brauer-Siegel theorem. Precisely, we show that, for d -> infinity ranging over the integers coprime with q, one has log (vertical bar sic(E-d/K)vertical bar . Reg(E-d/K)) similar to log H(E-d/K), where H(E-d/K) denotes the exponential differential height of E-d, sic(E-d/K) its Tate-Shafarevich group and Reg(E-d/K) its Neron-Tate regulator.
引用
收藏
页码:1059 / 1084
页数:26
相关论文
共 20 条
[1]  
[Anonymous], 1994, GRAD TEXTS MATH
[2]  
[Anonymous], 2006, An introduction to the theory of numbers
[3]  
Cohen Henri., 2007, Number Theory, VI
[4]   EXPLICIT POINTS ON THE LEGENDRE CURVE II [J].
Conceicao, Ricardo P. ;
Hall, Chris ;
Ulmer, Douglas .
MATHEMATICAL RESEARCH LETTERS, 2014, 21 (02) :261-280
[5]   Explicit points on y2 + xy - tdy = x3 and related character sums [J].
Davis, Christopher ;
Occhipinti, Tommy .
JOURNAL OF NUMBER THEORY, 2016, 168 :13-38
[6]  
GRIFFON R., 2018, EUROPEAN J MATH
[7]   Analogue of the Brauer-Siegel theorem for Legendre elliptic curves [J].
Griffon, Richard .
JOURNAL OF NUMBER THEORY, 2018, 193 :189-212
[8]   A Brauer-Siegel theorem for Fermat surfaces over finite fields [J].
Griffon, Richard .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 :523-549
[9]  
Hindry M, 2007, CRM SER, V4, P197
[10]   AN ANALOGUE OF THE BRAUER-SIEGEL THEOREM FOR ABELIAN VARIETIES IN POSITIVE CHARACTERISTIC [J].
Hindry, Marc ;
Pacheco, Amilcar .
MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (01) :45-93