Efficient GPU Implementation of Lucas-Kanade through OpenACC

被引:4
|
作者
Haggui, Olfa [1 ,2 ]
Tadonki, Claude [1 ]
Sayadi, Fatma [3 ]
Ouni, Bouraoui [2 ]
机构
[1] PSL Res Univ, Mines ParisTech, Ctr Rech Informat CRI, 60 Blvd St Michel, F-75006 Paris, France
[2] Sousse Natl Sch Engn, Networked Objects Control & Commun Syst NOCCS, BP 264 Sousse, Sousse 4023, Erriadh, Tunisia
[3] Fac Sci, Elect & Microelect Lab, Sousse, Tunisia
来源
PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5 | 2019年
关键词
Optical Flow; Lucas-Kanade; Multicore; Manycore; GPU; OpenACC;
D O I
10.5220/0007272107680775
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Optical flow estimation stands as an essential component for motion detection and object tracking procedures. It is an image processing algorithm, which is typically composed of a series of convolution masks (approximation of the derivatives) followed by 2 x 2 linear systems for the optical flow vectors. Since we are dealing with a stencil computation for each stage of the algorithm, the overhead from memory accesses is expected to be significant and to yield a genuine scalability bottleneck, especially with the complexity of GPU memory configuration. In this paper, we investigate a GPU deployment of an optimized CPU implementation via OpenACC, a directive-based parallel programming model and framework that ease the process of porting codes to a wide-variety of heterogeneous HPC hardware platforms and architectures. We explore each of the major technical features and strive to get the best performance impact. Experimental results on a Quadro P5000 are provided together with the corresponding technical discussions, taking the performance of the multicore version on a INTEL Broadwell EP as the baseline.
引用
收藏
页码:768 / 775
页数:8
相关论文
共 50 条
  • [1] Evaluation of an OpenMP Parallelization of Lucas-Kanade on a NUMA-Manycore
    Haggui, Olfa
    Tadonki, Claude
    Sayadi, Fatma
    Ouni, Bouraoui
    2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 436 - 441
  • [2] Lucas-Kanade algorithm with GNC
    Junghans, M
    Leich, A
    Jentschel, HJ
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1088 - 1091
  • [3] Error Analysis for Lucas-Kanade Based Schemes
    Marquez-Valle, Patricia
    Gil, Debora
    Hernandez-Sabate, Aura
    IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 184 - 191
  • [4] Lucas-Kanade 20 Years On: A Unifying Framework
    Simon Baker
    Iain Matthews
    International Journal of Computer Vision, 2004, 56 : 221 - 255
  • [5] Optimal Filter Estimation for Lucas-Kanade Optical Flow
    Sharmin, Nusrat
    Brad, Remus
    SENSORS, 2012, 12 (09) : 12694 - 12709
  • [6] Lucas-Kanade 20 years on: A unifying framework
    Baker, S
    Matthews, I
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) : 221 - 255
  • [7] Evaluation of Lucas-Kanade based optical flow algorithm
    Liu Xiaochen
    Liu Xiaojie
    Xiong Yufeng
    Yang Jiangtao
    Wang Yubo
    Wang Linwei
    Liu Jun
    Shen Chong
    Tang Jun
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [8] Lucas-Kanade Image Registration Using Camera Parameters
    Cho, Sunghyun
    Cho, Hojin
    Tai, Yu-Wing
    Moon, Young Su
    Cho, Junguk
    Lee, Shihwa
    Lee, Seungyong
    INTELLIGENT ROBOTS AND COMPUTER VISION XXIX: ALGORITHMS AND TECHNIQUES, 2012, 8301
  • [9] Using Lucas-Kanade Algorithms to Measure Human Movement
    Mi, Yao
    Bipin, Prakash Kumar
    Shah, Rajeev Kumar
    INFORMATION, COMMUNICATION AND COMPUTING TECHNOLOGY, ICICCT 2018, 2019, 835 : 118 - 130
  • [10] Dynamically Removing False Features in Pyramidal Lucas-Kanade Registration
    Niu, Yan
    Xu, Zhiwen
    Che, Xiangjiu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3535 - 3544