A fractional calculus interpretation of the fractional volatility model

被引:54
作者
Vilela Mendes, R. [1 ,2 ]
机构
[1] Univ Lisbon, Ctr Matemat & Aplicacoes Fundamentais, P-1649003 Lisbon, Portugal
[2] Univ Tecn Lisboa, P-1100 Lisbon, Portugal
关键词
Fractional calculus; Dynamics of markets; Stochastic models;
D O I
10.1007/s11071-008-9372-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on criteria of mathematical simplicity and consistency with empirical market data, a model with volatility driven by fractional noise has been constructed which provides a fairly accurate mathematical parametrization of the data. Here, the model is formulated in terms of a fractional integration of stochastic processes.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 24 条
[1]  
[Anonymous], P IFAC WORKSH FRACT
[2]   The geometry of crashes.: A measure of the dynamics of stock market crises [J].
Araujo, Tanya ;
Louca, Francisco .
QUANTITATIVE FINANCE, 2007, 7 (01) :63-74
[3]   Sampling almost-periodic functions with random probes of finite density [J].
Collet, P .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1953) :2263-2277
[4]  
Embrechts P, 2002, PRIN SER APPL MATH, P1
[5]  
Gorenflo R., 2001, MATH FINANCE, P171
[6]   Fractional calculus as a macroscopic manifestation of randomness [J].
Grigolini, P ;
Rocco, A ;
West, BJ .
PHYSICAL REVIEW E, 1999, 59 (03) :2603-2613
[7]   Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives [J].
Heymans, Nicole ;
Podlubny, Igor .
RHEOLOGICA ACTA, 2006, 45 (05) :765-771
[8]  
Hida T., 1993, WHITE NOISE INFINITE
[9]  
MACHADO J.A.T., 2003, Fractional Calculus Applied Analysis, V6, P73
[10]   Fractional calculus and continuous-time finance II: the waiting-time distribution [J].
Mainardi, F ;
Raberto, M ;
Gorenflo, R ;
Scalas, E .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) :468-481