Chromatic roots and limits of dense graphs

被引:4
作者
Csikvari, Peter [1 ,2 ,3 ]
Frenkel, Peter E. [4 ,5 ]
Hladky, Jan [6 ,8 ]
Hubai, Tamas [7 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Eotvos Lorand Univ, Dept Comp Sci, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[3] MTA ELTE Geometr & Algebra Combinator Res Grp, Pazmany Peter Setany 1-C, Budapest, Hungary
[4] Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[5] Eotvos Lorand Univ, Dept Algebra & Number Theory, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[6] Czech Acad Sci, Inst Comp Sci, Vodarenskou Vezi 2, Prague 18207, Czech Republic
[7] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[8] Czech Acad Sci, Inst Math, Zitna 25, Prague 11000, Czech Republic
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Chromatic root; Graph limit; Holomorphic moment;
D O I
10.1016/j.disc.2016.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note we observe that recent results of Abert and Hubai and of Csikvari and Frenkel about Benjamini-Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We offer a number of problems and conjectures motivated by this observation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1129 / 1135
页数:7
相关论文
共 16 条
[1]   MATCHINGS IN BENJAMINI-SCHRAMM CONVERGENT GRAPH SEQUENCES [J].
Abert, Miklos ;
Csikvari, Peter ;
Frenkel, Peter E. ;
Kun, Gabor .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (06) :4197-4218
[2]   Matching Measure, Benjamini-Schramm Convergence and the Monomer-Dimer Free Energy [J].
Abert, Miklos ;
Csikvari, Peter ;
Hubai, Tamas .
JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (01) :16-34
[3]   Benjamini-Schramm convergence and the distribution of chromatic roots for sparse graphs [J].
Abert, Miklos ;
Hubai, Tamas .
COMBINATORICA, 2015, 35 (02) :127-151
[4]  
Alon N., 2008, The Probabilistic Method
[5]  
[Anonymous], CHROMATIC POLYNOMIAL
[6]  
[Anonymous], 2012, AM MATH SOC C PUBLIC
[7]  
Benjamini I., 2001, Electron. J. Probab., V6, P13, DOI DOI 10.1214/EJP.V6-96
[8]   Convergent sequences of, dense graphs I: Subgraph frequencies, metric properties and testing [J].
Borgs, C. ;
Chayes, J. T. ;
Lovasz, L. ;
Sos, V. T. ;
Vesztergombi, K. .
ADVANCES IN MATHEMATICS, 2008, 219 (06) :1801-1851
[9]   The matching energy of random graphs [J].
Chen, Xiaolin ;
Li, Xueliang ;
Lian, Huishu .
DISCRETE APPLIED MATHEMATICS, 2015, 193 :102-109
[10]   Benjamini-Schramm continuity of root moments of graph polynomials [J].
Csikvari, Peter ;
Frenkel, Peter E. .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 :302-320