Real-rooted polynomials via generalized Bell umbra

被引:5
作者
Benyattou, Abdelkader [1 ]
Mihoubi, Miloud [1 ]
机构
[1] USTHB, Fac Math, RECITS Lab, PO 32 Box 32, Algiers 16111, Algeria
关键词
Polynomials with real zeros; Generalized Bell umbra; Partition polynomials; SEQUENCES; CONCAVITY;
D O I
10.7546/nntdm.2019.25.2.136-144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by the generalized Bell umbra and Rolle's theorem, we give some results on the real rootedness of polynomials. Some applications on partition polynomials are considered. Our results are illustrated by some comprehensive examples.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 20 条
[1]  
AHUJA JC, 1979, FIBONACCI QUART, V17, P158
[2]  
[Anonymous], 2014, INTEGERS
[3]  
[Anonymous], 1974, ADV COMBINATORICS
[4]  
[Anonymous], CHROMATIC POLYNOMIAL
[5]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[6]   Log-concavity and related properties of the cycle index polynomials [J].
Bender, EA ;
Canfield, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 74 (01) :57-70
[7]   CURIOUS CONGRUENCES RELATED TO THE BELL POLYNOMIALS [J].
Benyattou, Abdelkader ;
Mihoubi, Miloud .
QUAESTIONES MATHEMATICAE, 2018, 41 (03) :437-448
[8]   Real zeros and partitions without singleton blocks [J].
Bona, Miklos ;
Mezo, Istvan .
EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 :500-510
[9]  
Brenti F., 1994, Contemp. Math., V178, P71
[10]  
Gertsch A., 1996, Bull. Belg. Math. Soc. Simon Stevin, V3, P467