An Artificially Intelligent System for the Automated Issuance of Tornado Warnings in Simulated Convective Storm

被引:9
作者
Steinkruger, Dylan [1 ]
Markowski, Paul [1 ]
Young, George [1 ]
机构
[1] Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
关键词
DETECTION ALGORITHM; SEVERE WEATHER; PREDICTION; FORECAST; TIME; THUNDERSTORM; PERFORMANCE; MODEL; SHEAR;
D O I
10.1175/WAF-D-19-0249.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The utility of employing artificial intelligence (AI) to issue tornado warnings is explored using an ensemble of 128 idealized simulations. Over 700 tornadoes develop within the ensemble of simulations, varying in duration, length, and associated storm mode. Machine-learning models are trained to forecast the temporal and spatial probabilities of tornado formation for a specific lead time. The machine-learning probabilities are used to produce tornado warning decisions for each grid point and lead time. An optimization function is defined, such that warning thresholds are modified to optimize the performance of the AI system on a specified metric (e.g., increased lead time, minimized false alarms, etc.). Using genetic algorithms, multiple AI systems are developed with different optimization functions. The different AI systems yield unique warning output depending on the desired attributes of the optimization function. The effects of the different optimization functions on warning performance are explored. Overall, performance is encouraging and suggests that automated tornado warning guidance is worth exploring with real-time data.
引用
收藏
页码:1939 / 1965
页数:27
相关论文
共 70 条
[1]   Support vector machines for spatiotemporal tornado prediction [J].
Adrianto, Indra ;
Trafalis, Theodore B. ;
Lakshmanan, Valliappa .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2009, 38 (07) :759-776
[2]   Long-Term Performance Metrics for National Weather Service Tornado Warnings [J].
Brooks, Harold E. ;
Correia, James, Jr. .
WEATHER AND FORECASTING, 2018, 33 (06) :1501-1511
[3]   Tornado-warning performance in the past and future - A perspective from signal detection theory [J].
Brooks, HE .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (06) :837-+
[4]   Tornado Probability of Detection and Lead Time as a Function of Convective Mode and Environmental Parameters [J].
Brotzge, Jerald A. ;
Nelson, Steven E. ;
Thompson, Richard L. ;
Smith, Bryan T. .
WEATHER AND FORECASTING, 2013, 28 (05) :1261-1276
[5]  
Bryan GH, 2002, MON WEATHER REV, V130, P2917, DOI 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO
[6]  
2
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]   The NOAA/CIMSS ProbSevere Model: Incorporation of Total Lightning and Validation [J].
Cintineo, John L. ;
Pavolonis, Michael J. ;
Sieglaff, Justin M. ;
Lindsey, Daniel T. ;
Cronce, Lee ;
Gerth, Jordan ;
Rodenkirch, Benjamin ;
Brunner, Jason ;
Gravelle, Chad .
WEATHER AND FORECASTING, 2018, 33 (01) :331-345
[9]   An Empirical Model for Assessing the Severe Weather Potential of Developing Convection [J].
Cintineo, John L. ;
Pavolonis, Michael J. ;
Sieglaff, Justin M. ;
Lindsey, Daniel T. .
WEATHER AND FORECASTING, 2014, 29 (03) :639-653
[10]   AN OVERVIEW OF THE 2010 HAZARDOUS WEATHER TESTBED EXPERIMENTAL FORECAST PROGRAM SPRING EXPERIMENT [J].
Clark, Adam J. ;
Weiss, Steven J. ;
Kain, John S. ;
Jirak, Israel L. ;
Coniglio, Michael ;
Melick, Christopher J. ;
Siewert, Christopher ;
Sobash, Ryan A. ;
Marsh, Patrick T. ;
Dean, Andrew R. ;
Xue, Ming ;
Kong, Fanyou ;
Thomas, Kevin W. ;
Wang, Yunheng ;
Brewster, Keith ;
Gao, Jidong ;
Wang, Xuguang ;
Du, Jun ;
Novak, David R. ;
Barthold, Faye E. ;
Bodner, Michael J. ;
Levit, Jason J. ;
Entwistle, C. Bruce ;
Jensen, Tara L. ;
Correia, James, Jr. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2012, 93 (01) :55-74