Optimizzing simulated manufacturing systems using machine learning coupled to evolutionary algorithms

被引:0
作者
Huyet, AL [1 ]
Paris, JL [1 ]
机构
[1] Inst Francais Mecan Avancee, Equipe Rech Syst Prod, FRE CNRS 22 39, Lab Informat Modelisat & Optimisat Syst, F-63175 Aubiere, France
来源
ETFA 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 1, PROCEEDINGS | 2001年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent works have shown that simulation optimization of manufacturing systems can be efficiently addressed using evolutionary algorithms. The main drawbacks of these algorithms are that they are notoriously slow and that they bring no understanding on the behavior of the system. So we propose to add to these algorithms a machine learning module, which can highlights several critical parameters and guide then the research of solution. The benefits of this approach are demonstrated through the example of optimizing an assembly kanban system.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[2]  
Azadivar F., 1992, P 1992 WINT SIM C, P198, DOI DOI 10.1145/167293.167332
[3]  
Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888
[4]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[5]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[6]  
FOGEL DB, 1994, IEEE T NEURAL NETWOR, V5, P1
[7]  
FU MC, 1994, IN PRESS ANN OPERATI
[8]  
GARCIA BL, 1996, THESIS B PASCAL U CL
[9]  
KLEIJNEN JPC, 1994, ADV SIMULATION METHO, V1, P3
[10]  
Michalewicz Z., 1992, GENETIC ALGORITHMS D