A new insight on the effects of iron oxides and dissimilated metal-reducing bacteria on CH4 emissions in constructed wetland matrix systems

被引:38
作者
Cheng, Shiyi [1 ]
Qin, Congli [1 ]
Xie, Huijun [1 ]
Wang, Wenxing [1 ]
Hu, Zhen [2 ]
Liang, Shuang [2 ]
Feng, Kuishuang [3 ]
机构
[1] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China
[2] Shandong Univ, Sch Environm Sci & Engn, Shandong Key Lab Water Pollut Control & Resource, Qingdao 266237, Peoples R China
[3] Shandong Univ, Inst Blue & Green Dev, Weihai Inst Interdisciplinary Res, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
Constructed wetland matrix system; Iron reduction; Anaerobic oxidation of methane; CH4; emissions; METHANE PRODUCTION; ECOLOGICAL DIVERSITY; COMMUNITY STRUCTURE; REDUCTION; METHANOGENESIS; SUPPRESSION; SOIL; MICROORGANISMS; TRANSFORMATION; INHIBITION;
D O I
10.1016/j.biortech.2020.124296
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Iron oxides and dissimilated metal-reducing bacteria (DMRB) have been reported to result in a reduction in methane (CH4) emissions in constructed wetlands (CWs), but their mechanisms on CH4 production and oxidation remains unclear. Here, a set of CW matrix systems (Control, Fe-CWs, and FeB-CWs) was established to analyze the CH4 emission reduction from various angles, including the valencies of iron, microbial community structure and enzyme activity. The results revealed that the addition of iron oxides promoted the electron transfer between methanogens and Geobacter to promote CH4 production, but it was interesting that iron oxides also reduced the enzymes involved in the carbon dioxide (CO2) reduction pathway and promoted the enzymes that participated in anaerobic oxidation of methane (AOM) thereby leading to the overall reduction in CH4 emissions. Moreover, DMRB could promote iron reduction thereby further reducing CH4 emissions by promoting AOM and competing with methanogens for organic substrates.
引用
收藏
页数:9
相关论文
共 41 条
[1]   COMPETITION FOR ELECTRON-DONORS AMONG NITRATE REDUCERS, FERRIC IRON REDUCERS, SULFATE REDUCERS, AND METHANOGENS IN ANOXIC PADDY SOIL [J].
ACHTNICH, C ;
BAK, F ;
CONRAD, R .
BIOLOGY AND FERTILITY OF SOILS, 1995, 19 (01) :65-72
[2]   Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands [J].
Ansola, Gemma ;
Arroyo, Paula ;
Saenz de Miera, Luis E. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 473 :63-71
[3]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[4]   Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals [J].
Bar-Or, Itay ;
Elvert, Marcus ;
Ecker, Werner ;
Kushmaro, Ariel ;
Vigderovich, Hanni ;
Zhu, Qingzeng ;
Ben-Dov, Eitan ;
Sivan, Orit .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (21) :12293-12301
[5]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[6]   Fast and sensitive protein alignment using DIAMOND [J].
Buchfink, Benjamin ;
Xie, Chao ;
Huson, Daniel H. .
NATURE METHODS, 2015, 12 (01) :59-60
[7]   A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction [J].
Cai, Chen ;
Leu, Andy O. ;
Xie, Guo-Jun ;
Guo, Jianhua ;
Feng, Yuexing ;
Zhao, Jian-Xin ;
Tyson, Gene W. ;
Yuan, Zhiguo ;
Hu, Shihu .
ISME JOURNAL, 2018, 12 (08) :1929-1939
[8]   A review of a recently emerged technology: Constructed wetland - Microbial fuel cells [J].
Doherty, Liam ;
Zhao, Yaqian ;
Zhao, Xiaohong ;
Hu, Yuansheng ;
Hao, Xiaodi ;
Xu, Lei ;
Liu, Ranbin .
WATER RESEARCH, 2015, 85 :38-45
[9]   Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II) [J].
Fu, Liang ;
Li, Shan-Wei ;
Ding, Zhao-Wei ;
Ding, Jing ;
Lu, Yong-Ze ;
Zeng, Raymond J. .
WATER RESEARCH, 2016, 88 :808-815
[10]   Taxonomic phylogenetic and ecological diversity of methanogenic Archaea [J].
Garcia, JL ;
Patel, BKC ;
Ollivier, B .
ANAEROBE, 2000, 6 (04) :205-226