Conformal dimension does not assume values between zero and one

被引:32
作者
Kovalev, Leonid V. [1 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
关键词
D O I
10.1215/S0012-7094-06-13411-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the conformal dimension of any metric space is at least one unless it is zero. This confirms a conjecture of J. T. Tyson [23, Conj. 1.2].
引用
收藏
页码:1 / 13
页数:13
相关论文
共 28 条
[1]  
[Anonymous], 1988, Real analysis
[2]  
Banach S., 1955, Theorie des Operations Lineaires (French)
[3]  
Bishop CJ, 2001, ANN ACAD SCI FENN-M, V26, P361
[4]   Conformal dimension of the antenna set [J].
Bishop, CJ ;
Tyson, JT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) :3631-3636
[5]   A quasisymmetric surface with no rectifiable curves [J].
Bishop, CJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) :2035-2040
[6]   Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary [J].
Bonk, M ;
Kleiner, B .
GEOMETRY & TOPOLOGY, 2005, 9 :219-246
[7]   AT THE BOUNDARY OF SOME HYPERBOLIC POLYHEDRA [J].
BOURDON, M .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (01) :119-141
[8]  
Bourdon M, 1997, GEOM FUNCT ANAL, V7, P245, DOI 10.1007/PL00001619
[9]  
Bourdon M, 2003, J REINE ANGEW MATH, V558, P85
[10]   Reifenberg flat metric spaces, snowballs, and embeddings [J].
David, G ;
Toro, T .
MATHEMATISCHE ANNALEN, 1999, 315 (04) :641-710