RISK MEASURES FOR NON-INTEGRABLE RANDOM VARIABLES

被引:26
作者
Delbaen, Freddy [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
risk measures; random variables;
D O I
10.1111/j.1467-9965.2009.00370.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We show that when a real-valued risk measure is defined on a solid, rearrangement invariant space of random variables, then necessarily it satisfies a weak compactness, also called continuity from below, property, and the space necessarily consists of integrable random variables. As a result we see that a risk measure defined for, say, Cauchy-distributed random variable, must take infinite values for some of the random variables.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 8 条
[1]  
[Anonymous], 2000, Coherent risk measures
[2]  
BIAGINI S, 2006, CONTINUITY PROPERTIE
[3]  
CHERIDITO P, 2006, MONETARY RISK MEASUR
[4]  
Delbaen F., 2002, Advances in Finance and Stochastics, P1
[5]  
Follmer Hans, 2004, De Gruyter Studies in Mathematics, V27
[6]  
Jouini E, 2006, ADV MATH ECON, V9, P49, DOI 10.1007/4-431-34342-3_4
[7]  
Krasnosel'skii M. A., 1961, CONVEX FUNCTIONALS O
[8]   Infinite-mean models and the LDA for operational risk [J].
Neslehova, Johanna ;
Embrechts, Paul ;
Chavez-Demoulin, Valerie .
JOURNAL OF OPERATIONAL RISK, 2006, 1 (01) :3-25