Opto-electronic memristors: Prospects and challenges in neuromorphic computing

被引:46
作者
Emboras, Alexandros [1 ]
Alabastri, Alessandro [2 ]
Lehmann, Paul [1 ]
Portner, Kevin [1 ]
Weilenmann, Christoph [1 ]
Ma, Ping [3 ]
Cheng, Bojun [3 ]
Lewerenz, Mila [3 ]
Passerini, Elias [3 ]
Koch, Ueli [3 ]
Aeschlimann, Jan [1 ]
Ducry, Fabian [1 ]
Leuthold, Juerg [3 ]
Luisier, Mathieu [1 ]
机构
[1] Swiss Fed Inst Technol, Integrated Syst Lab IIS, CH-8092 Zurich, Switzerland
[2] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[3] Swiss Fed Inst Technol, Inst Electromagnet Fields IEF, CH-8092 Zurich, Switzerland
关键词
NEURAL-NETWORKS; MEMORY; CLASSIFICATION;
D O I
10.1063/5.0028539
中图分类号
O59 [应用物理学];
学科分类号
摘要
Memristive-based electro-optical neuromorphic hardware takes advantage of both the high-density of electronic circuits and the high bandwidth of their photonic counterparts, thus showing potential for low-power artificial intelligence applications. In this Perspective paper, we introduce a class of electro-optical memristors that can emulate the key properties of synapses and neurons, which are essential features for the realization of electro-optical neuromorphic functionalities. We then describe the challenges associated with existing technologies and finally give our viewpoint on possible developments toward an energy-efficient neuromorphic platform.
引用
收藏
页数:8
相关论文
共 71 条
[1]  
[Anonymous], 2011, INT EL DEV M
[2]  
[Anonymous], 2020, ARXIV200200281
[3]  
[Anonymous], 2009, P 26 ANN INT C MACH
[4]   'Memristive' switches enable 'stateful' logic operations via material implication [J].
Borghetti, Julien ;
Snider, Gregory S. ;
Kuekes, Philip J. ;
Yang, J. Joshua ;
Stewart, Duncan R. ;
Williams, R. Stanley .
NATURE, 2010, 464 (7290) :873-876
[5]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[6]   Origami: A 803-GOp/s/W Convolutional Network Accelerator [J].
Cavigelli, Lukas ;
Benini, Luca .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (11) :2461-2475
[7]   DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [J].
Chen, Chenyi ;
Seff, Ari ;
Kornhauser, Alain ;
Xiao, Jianxiong .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2722-2730
[8]   A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells [J].
Chen, Wenhao ;
Fang, Runchen ;
Balaban, Mehmet B. ;
Yu, Weijie ;
Gonzalez-Velo, Yago ;
Barnaby, Hugh J. ;
Kozicki, Michael N. .
NANOTECHNOLOGY, 2016, 27 (25)
[9]   Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching [J].
Cheng, Bojun ;
Emboras, Alexandros ;
Salamin, Yannick ;
Ducry, Fabian ;
Ma, Ping ;
Fedoryshyn, Yuriy ;
Andermatt, Samuel ;
Luisier, Mathieu ;
Leuthold, Juerg .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[10]   Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials [J].
Cheng, Zengguang ;
Rios, Carlos ;
Youngblood, Nathan ;
Wright, C. David ;
Pernice, Wolfram H. P. ;
Bhaskaran, Harish .
ADVANCED MATERIALS, 2018, 30 (32)