Stabilization of low-order mixed finite elements for the plane elasticity equations
被引:4
|
作者:
Li, Zhenzhen
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Li, Zhenzhen
[1
]
Chen, Shaochun
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Chen, Shaochun
[2
]
Qu, Shuanghong
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Qu, Shuanghong
[1
]
Li, Minghao
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
Li, Minghao
[3
]
机构:
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[3] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
In this paper, we consider the mixed finite element method of the plane elasticity equations based on the Hellinger-Reissner variational principle. Low order mixed finite element spaces are used to approximate the stress and the displacement. Based on the local polynomial projection stabilization method, we present a stabilization scheme for the pairs to overcome the lack of the inf-supcondition. The stability is proved and the error estimate is derived. At last, two numerical examples are implemented to test the stability and effectiveness of the proposed method. These pairs are very convenient in the numerical implementation for the mixed form of the plane elasticity equations. (C) 2016 Elsevier Ltd. All rights reserved.