Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems

被引:32
作者
Bastiaansen, Robbin [1 ]
Carter, Paul [2 ]
Doelman, Arjen [1 ]
机构
[1] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
[2] Univ Arizona, Dept Math, 617 N Santa Rita Ave, Tucson, AZ 85721 USA
关键词
pattern formation; traveling waves; geometric singular perturbation theory; spectral stability; Lin's method; reaction-diffusion-advection equations; SINGULAR PERTURBATION-THEORY; OSCILLATORY TAILS; BANDED VEGETATION; KLAUSMEIER MODEL; TRAVELING PULSES; PERIODIC-ORBITS; STABILITY; DICHOTOMIES; EXISTENCE; WAVES;
D O I
10.1088/1361-6544/ab1767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In water-limited regions, competition for water resources results in the formation of vegetation patterns; on sloped terrain, one finds that the vegetation typically aligns in stripes or arcs. We consider a two-component reaction-diffusion-advection model of Klausmeier type describing the interplay of vegetation and water resources and the resulting dynamics of these patterns. We focus on the large advection limit on constantly sloped terrain, in which the diffusion of water is neglected in favor of advection of water downslope. Planar vegetation pattern solutions are shown to satisfy an associated singularly perturbed traveling wave equation, and we construct a variety of traveling stripe and front solutions using methods of geometric singular perturbation theory. In contrast to prior studies of similar models, we show that the resulting patterns are spectrally stable to perturbations in two spatial dimensions using exponential dichotomies and Lin's method. We also discuss implications for the appearance of curved stripe patterns on slopes in the absence of terrain curvature.
引用
收藏
页码:2759 / 2814
页数:56
相关论文
共 55 条
[1]  
Bastiaansen R, 2018, PULSE SOLUTION UNPUB
[2]   The dynamics of disappearing pulses in a singularly perturbed reaction-diffusion system with parameters that vary in time and space [J].
Bastiaansen, Robbin ;
Doelman, Arjen .
PHYSICA D-NONLINEAR PHENOMENA, 2019, 388 :45-72
[3]   Multistability of model and real dryland ecosystems through spatial self-organization [J].
Bastiaansen, Robbin ;
Jaibi, Olfa ;
Deblauwe, Vincent ;
Eppinga, Maarten B. ;
Siteur, Koen ;
Siero, Eric ;
Mermoz, Phane ;
Bouvet, Alexandre ;
Doelman, Arjen ;
Rietkerk, Max .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (44) :11256-11261
[4]   Electrical Waves in a One-Dimensional Model of Cardiac Tissue [J].
Beck, Margaret ;
Jones, Christopher K. R. T. ;
Schaeffer, David ;
Wechselberger, Martin .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04) :1558-1581
[5]   GEOMETRIC APPROACH TO SINGULAR PERTURBATION PROBLEMS WITH APPLICATIONS TO NERVE IMPULSE EQUATIONS [J].
CARPENTER, GA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 23 (03) :335-367
[6]  
Carter P, UNPUB
[7]   TRAVELING STRIPES IN THE KLAUSMEIER MODEL OF VEGETATION PATTERN FORMATION [J].
Carter, Paul ;
Doelman, Arjen .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (06) :3213-3237
[8]   Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System [J].
Carter, Paul ;
Sandstede, Bjorn .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01) :236-349
[9]   Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh-Nagumo System [J].
Carter, Paul ;
de Rijk, Bjorn ;
Sandstede, Bjorn .
JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (05) :1369-1444
[10]   FAST PULSES WITH OSCILLATORY TAILS IN THE FITZHUGH-NAGUMO SYSTEM [J].
Carter, Paul ;
Sandstede, Bjoern .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) :3393-3441