A Nystrom-based finite element method on polygonal elements

被引:6
作者
Anand, Akash [1 ]
Ovall, Jeffrey S. [2 ]
Weisser, Steffen [3 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR 97201 USA
[3] Saarland Univ, Dept Math, D-66041 Saarbrucken, Germany
基金
美国国家科学基金会;
关键词
Finite element methods; Trefftz methods; Polygonal meshes; Nystrom methods; BEM-based; FEM Virtual element methods; BEM-BASED FEM; 2ND-ORDER ELLIPTIC PROBLEMS; DISCRETE OPERATOR SCHEMES; POLYHEDRAL MESHES; RECONSTRUCTION OPERATORS; DIFFUSION PROBLEMS; ARBITRARY-ORDER; GENERAL MESHES; INTERPOLATION; DOMAINS;
D O I
10.1016/j.camwa.2018.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider families of finite elements on polygonal meshes, that are defined implicitly on each mesh cell as solutions of local Poisson problems with polynomial data. Functions in the local space on each mesh cell are evaluated via Nystrom discretizations of associated integral equations, allowing for curvilinear polygons and non-polynomial boundary data. Several experiments demonstrate the approximation quality of interpolated functions in these spaces. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3971 / 3986
页数:16
相关论文
共 59 条
  • [1] Equivalent projectors for virtual element methods
    Ahmad, B.
    Alsaedi, A.
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 376 - 391
  • [2] [Anonymous], SOC SCI FENN COMMENT
  • [3] [Anonymous], 1985, MONOGRAPHS STUDIES M
  • [4] [Anonymous], 2014, APPL MATH SCI
  • [5] [Anonymous], 1992, Research in Applied Mathematics
  • [6] Antonietti P., 2017, COMPUT MATH APPL
  • [7] A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES
    Antonietti, P. F.
    da Veiga, L. Beirao
    Mora, D.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 386 - 404
  • [8] Astaneh A. V., 2017, ARXIV E PRINTS
  • [9] Basic principles of hp virtual elements on quasiuniform meshes
    Beirao da Veiga, L.
    Chernov, A.
    Mascotto, L.
    Russo, A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (08) : 1567 - 1598
  • [10] Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems
    Benedetto, M. F.
    Berrone, S.
    Borio, A.
    Pieraccini, S.
    Scialo, S.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 : 18 - 40