Combined analysis of precipitation and water deficit for drought hazard assessment

被引:25
作者
Tokarczyk, Tamara [1 ]
Szalinska, Wiwiana [1 ]
机构
[1] Natl Res Inst, Inst Meteorol & Water Management, Wroclaw, Poland
关键词
drought hazard; hydrological drought; Markov chain; meteorological drought; radar plots; Standardized Precipitation Index (SPI); Standardized Runoff Index (SRI); risque de secheresse; secheresse hydrologique; chaine de Markov; secheresse meteorologique; traces radar; Indice normalise des precipitations (INP); Indice normalise du ruissellement (INR); MARKOV-CHAIN MODEL; INDEXES; PREDICTION;
D O I
10.1080/02626667.2013.862335
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The combined analysis of precipitation and water scarcity was done with the use of the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), developed as a monthly, two-variable SPI-SRI indicator to identify different classes of hydrometeorological conditions. Stochastic analysis of a long-term time series (1966-2005) of monthly SPI-SRI indicator values was performed using a first-order Markov chain model. This provided characteristics of regional features of drought formation, evolution and persistence, as well as tools for statistical long-term drought hazard prediction. The study was carried out on two subbasins of the Odra River (Poland) of different orography and land use: the mountainous Nysa Kodzka basin and the lowland, agricultural Prosna basin. Classification obtained with the SPI-SRI indicator was compared with the output from the NIZOWKA model that provided identification of hydrological drought events including drought duration and deficit volume. Severe and long-duration droughts corresponded to SPI-SRI Class 3 (dry meteorological and dry hydrological), while severe but short-term droughts (lasting less than 30days) corresponded to SPI-SRI Class 4 (wet meteorological and dry hydrological). The results confirm that, in Poland, meteorologically dry conditions often shift to hydrologically dry conditions within the same month, droughts rarely last longer than 2months and two separate drought events can be observed within the same year. ResumeL'analyse combinee des precipitations et du deficit en eau a ete realisee en utilisant l'indice normalise des precipitations (INP) et l'indice normalise du ruissellement (INR), calcules sur une base mensuelle, qui ont ete combines pour fournir une informations selon deux variables et identifier les differentes categories de conditions hydrometeorologiques. L'analyse stochastique des longues series chronologiques (1966-2005) des valeurs mensuelles des indicateurs INP et INR a ete realisee en utilisant un modele de chaine de Markov d'ordre un. Cela nous a fourni les caracteristiques regionales de la formation, de l'evolution et de la persistance de la secheresse, ainsi que des outils pour la prevision statistique a long terme du risque de secheresse. L'etude a ete realisee sur deux sous-bassins de la riviere Odra (Pologne) d'orographie et d'utilisation des sols differentes: le bassin montagneux de Nysa Kodzka et le bassin agricole de plaine de Prosna. La classification obtenue avec l'indicateur INP-INR a ete comparee avec la sortie du modele Nizowka qui a identifie les secheresse hydrologiques y compris leur duree et leur volume de deficit. Les secheresses graves et de longue duree correspondent a la classe 3 de l'indicateur INP-INR (meteorologie seche et hydrologie seche), tandis que les secheresses graves, mais courtes (d'une duree inferieure a 30 jours) correspondent a la classe 4 de l'indicateur INP-INR (meteorologie humide et hydrologie seche). Les resultats confirment que, sur le territoire de la Pologne, les conditions meteorologiques seches se transforment souvent en secheresse hydrologique au cours du meme mois, les secheresses durant rarement plus de deux mois et deux episodes de secheresse distincts peuvant etre observes au sein d'une meme annee.
引用
收藏
页码:1675 / 1689
页数:15
相关论文
共 61 条
[1]  
Abramowitz M., 1965, Handbook of mathematical formulas, graphs and mathematical tables
[2]  
Aksoy H., 2000, Turkish Journal of Engineering and Environmental Sciences, V24, P419
[3]   Markov Chain Models for Hydrological Drought Characteristics [J].
Akyuz, Dilek Eren ;
Bayazit, Mehmetcik ;
Onoz, Bihrat .
JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (01) :298-309
[4]  
[Anonymous], 1936, P NATL I SCI INDIA, DOI DOI 10.1007/S13171-019-00164-5
[5]   Probabilities and return periods of multisite droughts [J].
Bayazit, M ;
Önöz, B .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2005, 50 (04) :605-615
[6]   Drought length properties for periodic-stochastic hydrologic data [J].
Cancelliere, A ;
Salas, JD .
WATER RESOURCES RESEARCH, 2004, 40 (02)
[7]   Drought probabilities and return period for annual streamflows series [J].
Cancelliere, Antonino ;
Salas, Jose D. .
JOURNAL OF HYDROLOGY, 2010, 391 (1-2) :79-91
[8]  
Changnon S.A., 1987, Detecting drought conditions in Illinois, vol ISWS/CIR-169-87, P36
[9]   MODELING DAILY PRECIPITATION OCCURRENCE PROCESS WITH MARKOV-CHAIN [J].
CHIN, EH .
WATER RESOURCES RESEARCH, 1977, 13 (06) :949-956
[10]  
CINLAR E, 1974, INTRO STOCHASTIC PRO