Convergence of an extragradient-type method for variational inequality with applications to optimal control problems

被引:139
作者
Phan Tu Vuong [1 ,2 ]
Shehu, Yekini [3 ,4 ]
机构
[1] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Univ Nigeria, Dept Math, Nsukka, Nigeria
[4] Univ Wurzburg, Inst Math, Campus Hubland Nord,Emil Fischer Str 30, D-97074 Wurzburg, Germany
关键词
Variational inequality; Pseudomonotone operator; Strong convergence; Hilbert spaces; Optimal control problem;
D O I
10.1007/s11075-018-0547-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to introduce an extragradient-type method for solving variational inequality with uniformly continuous pseudomonotone operator. The strong convergence of the iterative sequence generated by our method is established in real Hilbert spaces. Our method uses computationally inexpensive Armijo-type linesearch procedure to compute the stepsize under reasonable assumptions. Finally, we give numerical implementations of our results for optimal control problems governed by ordinary differential equations.
引用
收藏
页码:269 / 291
页数:23
相关论文
共 57 条
[1]   ERROR BOUNDS FOR EULER APPROXIMATION OF LINEAR-QUADRATIC CONTROL PROBLEMS WITH BANG-BANG SOLUTIONS [J].
Alt, Walter ;
Baier, Robert ;
Gerdts, Matthias ;
Lempio, Frank .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03) :547-570
[2]  
[Anonymous], 2007, AIMS SERIES APPL MAT
[3]  
[Anonymous], 1981, Numerical Analysis of Variational Inequalities
[4]  
[Anonymous], ALGORITHMS
[5]  
[Anonymous], J IND MANAG OPTIM
[6]  
[Anonymous], OPER RES
[7]  
Aubin J.P., 1984, Applied Nonlinear Analysis
[8]  
Baiocchi C., 1984, VARIATIONAL QUASIVAR
[9]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[10]   An explicit algorithm for monotone variational inequalities [J].
Bello Cruz, J. Y. ;
Iusem, A. N. .
OPTIMIZATION, 2012, 61 (07) :855-871