Lacunary Fourier and Walsh-Fourier series near L1

被引:0
作者
Di Plinio, Francesco [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Indiana Univ, Inst Sci Comp & Appl Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Carleson theorem; Pointwise convergence; Endpoint bounds; Extrapolation theory; BILINEAR HILBERT TRANSFORM; CONVERGENCE; INEQUALITIES;
D O I
10.1007/s13348-013-0094-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following theorem: given a lacunary sequence of integers {n(j)}, the subsequences F(nj)f and W(nj)f of respectively the Fourier and the Walsh-Fourier series of f : T -> C converge almost everywhere to f whenever integral(T) vertical bar f(x)vertical bar log log(e(e) + vertical bar f(x)vertical bar) log log log log (e(eee) + vertical bar f(x)vertical bar) dx < infinity (1). Our integrability condition (1) is less stringent than the homologous assumption in the almost everywhere convergence theorems of Lie [14] (Fourier case) and Do and Lacey [6] (Walsh-Fourier case), where a triple-log term appears in place of the quadruple-log term of (1). Our proof of the Walsh-Fourier case is self-contained and, in antithesis to [6], avoids the use of Antonov's lemma [1,19], relying instead on the novel weak-L-p bound for the lacunary Walsh-Carleson operator parallel to sup(nj) vertical bar W(nj)f vertical bar parallel to(p,infinity) <= K log(e + p')parallel to f parallel to(p) for all 1 < p <= 2.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 20 条
  • [1] Antonov N.Yu, 1996, P 20 WORKSH FUNCT TH, V2, P187
  • [2] Carro MJ, 2004, REV MAT IBEROAM, V20, P131
  • [3] Demeter C., J FOURIER A IN PRESS
  • [4] Demeter C., GUIDE CARLESONS THEO
  • [5] On the convergence of lacunary Walsh-Fourier series
    Do, Yen Q.
    Lacey, Michael T.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 241 - 254
  • [6] Weighted norm inequalities for maximally modulated singular integral operators
    Grafakos, L
    Martell, JM
    Soria, F
    [J]. MATHEMATISCHE ANNALEN, 2005, 331 (02) : 359 - 394
  • [7] Hagelstein PA, 2007, CONTEMP MATH, V444, P175
  • [8] Multilinear extrapolation and applications to the bilinear Hilbert transform
    Jesus Carro, Maria
    Grafakos, Loukas
    Maria Martell, Jose
    Soria, Fernando
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 479 - 497
  • [9] CONVEXITY, TYPE AND THE 3 SPACE PROBLEM
    KALTON, NJ
    [J]. STUDIA MATHEMATICA, 1981, 69 (03) : 247 - 287
  • [10] BMO ESTIMATES FOR LACUNARY SERIES
    KOCHNEFF, E
    SAGHER, Y
    ZHOU, KC
    [J]. ARKIV FOR MATEMATIK, 1990, 28 (02): : 301 - 310