Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete

被引:308
作者
Abdulkareem, Omar A. [1 ]
Al Bakri, A. M. Mustafa [1 ]
Kamarudin, H. [1 ]
Nizar, I. Khairul [2 ]
Saif, Ala'eddin A. [3 ]
机构
[1] Univ Malaysia Perlis, Sch Mat Engn, Ctr Excellence Geopolymer & Green Technol CEGeoTe, Perlis 01000, Malaysia
[2] Univ Malaysia Perlis, Sch Environm Engn, Perlis 01000, Malaysia
[3] Univ Malaysia Perlis, Sch Microelect Engn, Arau 02600, Perlis, Malaysia
关键词
Lightweight geopolymer; Thermal shrinkage; SEM; Elevated temperature; Thermal expansion; Compressive strength; AGGREGATE CONCRETE;
D O I
10.1016/j.conbuildmat.2013.09.047
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper reports a comparative study of the influence of elevated temperature on geopolymer paste, mortars and lightweight aggregate geopolymer concrete (LWAGC) systems made by using fly ash (FA) as only source material. The mechanical, thermo-physical and macro/micro-structural properties of the geopolymers before and after the exposure to elevated temperatures of 400, 600 and 800 degrees C have been investigated. The sequential changes in the geopolymeric gel structure upon the exposure to the elevated temperature and their reflections on the geopolymers thermal behavior have been also explored. The physical properties of the unexposed geopolymers to elevated temperatures show that the LWAGC possesses lower density and water absorption than the geopolymer paste and mortar. The mechanical strength of the geopolymer materials prior firing shows that the geopolymer paste and mortar possesses significantly high strength compared to the LWAGC, due to the lightweight aggregate (LWA) low strength and porous microstructure. It is found that the relatively high activator content used to activate the raw material, FA, results in excellent mechanical and microstructural properties for the unexposed geopolymers to elevated temperatures. While, it is significantly participating in the deterioration of the geopolymers mechanical and physical properties after exposed to the elevated temperatures especially at 800 degrees C by producing high unreacted silicate species. Introducing the LWAs to the geopolymeric structure considerably enhances the mechanical and microstructural properties of the geopolymers at elevated temperatures. This is attributed to the low thermal conductivity characteristics of the LWAs which inhibited the heat diffusion through the structure. The reported excellent thermal performance of LWAGCs at the elevated temperatures would increase the suggested application for this novel environmentally-friendly material. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 39 条
[1]  
Abdulkareem OA, 2013, ADV SCI LETT, V19, P282
[2]   Influence of elevated temperatures on the mechanical properties and microstructure of self consolidating lightweight aggregate concrete [J].
Andic-Cakir, Ozge ;
Hizal, Selim .
CONSTRUCTION AND BUILDING MATERIALS, 2012, 34 :575-583
[3]  
[Anonymous], 2003, E83103 ASTM INT
[4]  
[Anonymous], 2004, 211298 ACI COMM
[5]  
[Anonymous], 2001, C14001 ASTM
[6]  
[Anonymous], 1987, B213R87 ACI
[7]  
[Anonymous], 2009, 104 CENTC 3
[8]  
[Anonymous], P 6 C S OP SYST DES
[9]  
[Anonymous], C61808A ASTM INT
[10]   Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing [J].
Bakharev, T .
CEMENT AND CONCRETE RESEARCH, 2006, 36 (06) :1134-1147