Fibred sites and stack cohomology

被引:9
作者
Jardine, J. F. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
Primary 14F20; Secondary 18G30; Secondary 14A20;
D O I
10.1007/s00209-006-0009-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The usual notion of the site associated to a stack is expanded to a definition to a site C/A fibred over a presheaf of categories A on a site C. If the presheaf of categories is a presheaf of groupoids G, then the associated homotopy theory is Quillen equivalant to the homotopy theory of simplicial presheaves over BG, and so the homotopy theory for the fibred site C/G is an invariant of the homotopy type of G. Similar homotopy invariance results obtain for presheaves of spectra and presheaves of symmetric spectra on C/G. In particular, stack cohomology can be calculated on the fibred site for any representing presheaf of groupoids within a fixed homotopy type.
引用
收藏
页码:811 / 836
页数:26
相关论文
共 14 条
[1]   Local projective model structures on simplicial presheaves [J].
Blander, BA .
K-THEORY, 2001, 24 (03) :283-301
[2]  
BOUSFIELD AK, 1978, SPRINGER LECT NOTES, V658, P80
[3]  
BOUSFIELD AK, 1987, SPRINGER LECT NOTES, V304
[4]  
Goerss P. G., 1999, PROG MATH, V174
[5]  
HOLLANDER S, IN PRESS ISRAEL J MA
[6]   Categorical homotopy theory [J].
Jardine, J. F. .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2006, 8 (01) :71-144
[7]  
Jardine J F, 1997, PROGR MATH, V146
[8]  
Jardine J.F., 2001, HOMOL HOMOTOPY APPL, V3, P361
[9]   SIMPLICIAL PRESHEAVES [J].
JARDINE, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 47 (01) :35-87
[10]   Presheaves of symmetric spectra [J].
Jardine, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 150 (02) :137-154