Global existence for nonlinear hyperbolic systems of Kirchhoff type

被引:13
作者
Callegari, E [1 ]
Manfrin, R [1 ]
机构
[1] INST UNIV ARCHITETTURA,DIPARTIMENTO CONSTRUZ ARCHITETTURA,I-30135 VENICE,ITALY
关键词
D O I
10.1006/jdeq.1996.0179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the global solvability of the Cauchy problem, with small and suitably smooth initial data, for nonlinear hyperbolic systems with integrodifferential coefficients of Kirchhoff type. This extends to a wide class of nonlinear hyperbolic equations some results in [4, 5, 7] and [10]. Our method is similar to the technique employed by Greenberg & Hu in [10] in the case of the classical Kirchhoff equation. (C) 1996 Academic Press, Inc.
引用
收藏
页码:239 / 274
页数:36
相关论文
共 18 条
[1]  
AROSIO A, RES NOTES MATH, V109
[2]  
Bernstein S., 1940, IZV AKAD NAUK SSSR M, V4, P17
[3]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[4]   A CLASS OF NONLINEAR HYPERBOLIC PROBLEMS WITH GLOBAL-SOLUTIONS [J].
DANCONA, P ;
SPAGNOLO, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :201-219
[5]   NONLINEAR PERTURBATIONS OF THE KIRCHHOFF EQUATION [J].
DANCONA, P ;
SPAGNOLO, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (07) :1005-1029
[6]  
DANCONA P, IN PRESS CHINESE ANN
[7]  
DANCONA P, 1992, DEV PDES APPL MATH P
[10]   THE INITIAL-VALUE PROBLEM FOR A STRETCHED STRING [J].
GREENBERG, JM ;
HU, SC .
QUARTERLY OF APPLIED MATHEMATICS, 1980, 38 (03) :289-311