Scaling of normal form analysis coefficients under coordinate change

被引:15
作者
Dobson, I [1 ]
Barocio, E [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
nonlinear modal behavior; normal form method; power system dynamics; strong resonance;
D O I
10.1109/TPWRS.2004.831691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Power system normal form analysis has developed coefficients and indices in modal coordinates to quantify nonlinear modal interactions. We study the changes in the coefficients and indices when the power system equations are expressed in different coordinates or units and show that they can be normalized to be invariant to coordinate changes and thus intrinsic to the power system. The results are illustrated on a 4-generator system. An example shows that the coefficients and indices not only detect nonlinear interactions but also can become very large near a strong resonance in the system linearization.
引用
收藏
页码:1438 / 1444
页数:7
相关论文
共 15 条
[1]  
Arnold VI., 1988, GRUNDLEHREN MATH WIS, Vsecond edn, DOI 10.1007/978-3-662-11832-0
[2]  
Arrowsmith D. K., 1990, INTRO DYNAMICAL SYST
[3]  
BAROCIO E, 2002, P IEEE POW ENG SOC W
[4]   Is strong modal resonance a precursor to power system oscillations? [J].
Dobson, I ;
Zhang, JF ;
Greene, S ;
Engdahl, H ;
Sauer, PW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (03) :340-349
[5]  
DOBSON I, 2001, P IREP C BULK POW SY
[6]  
Guckenheimer J, 1986, NONLINEAR OSCILLATIO
[7]  
Jang YI, 1998, ELECTROCHEM SOLID ST, V1, P13, DOI 10.1149/1.1390619
[8]   Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields [J].
Lin, CM ;
Vittal, V ;
Kliemann, W ;
Fouad, AA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (02) :781-787
[9]   Nonlinear modal interaction in HVDC/AC power systems with DC power modulation [J].
Ni, YX ;
Vittal, V ;
Kliemann, W ;
Fouad, AA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (04) :2011-2017
[10]  
Rogers G., 2000, POWER SYSTEM OSCILLA