In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

被引:0
作者
Wang, Fei [1 ]
Wang, Hua-Lin [1 ]
Qiu, Yang [1 ]
Chang, Yu-Long [1 ]
Long, Yi-Tao [2 ,3 ]
机构
[1] E China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Ass, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[3] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
美国国家科学基金会;
关键词
SERS; SILVER; MOLECULES; SPECTRA;
D O I
10.1038/srep18698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.
引用
收藏
页数:7
相关论文
共 34 条
[1]   SERS Detection of Small Inorganic Molecules and Ions [J].
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (45) :11214-11223
[2]   Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics [J].
Andreou, Chrysafis ;
Hoonejani, Mehran R. ;
Barmi, Meysam R. ;
Moskovits, Martin ;
Meinhart, Carl D. .
ACS NANO, 2013, 7 (08) :7157-7164
[3]   Controlled microfluidic interfaces [J].
Atencia, J ;
Beebe, DJ .
NATURE, 2005, 437 (7059) :648-655
[4]   Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids [J].
Bell, SEJ ;
Sirimuthu, NMS .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (33) :7405-7410
[5]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[6]   Versatile control of multiphase laminar flow for in-channel microfabrication [J].
Gao, Yunxiang ;
Chen, Liwei .
LAB ON A CHIP, 2008, 8 (10) :1695-1699
[7]   Nanoparticulate Functional Materials [J].
Goesmann, Helmut ;
Feldmann, Claus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (08) :1362-1395
[8]   Nanosensors Based on Viologen Functionalized Silver Nanoparticles: Few Molecules Surface. Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots [J].
Guerrini, Luca ;
Garcia-Ramos, Jose V. ;
Domingo, Concepcion ;
Sanchez-Cortes, Santiago .
ANALYTICAL CHEMISTRY, 2009, 81 (04) :1418-1425
[9]   Effects of Hydrogen and Chloride Ions on Automobile Interstitial-Free Steel Corrosion [J].
Guo, L. Q. ;
Liang, D. ;
Bai, Y. ;
Miao, X. L. ;
Qiao, L. J. ;
Volinsky, A. A. .
CORROSION, 2014, 70 (10) :1024-1030
[10]   Fabrication of nanocolumns for liquid chromatography [J].
He, B ;
Tait, N ;
Regnier, F .
ANALYTICAL CHEMISTRY, 1998, 70 (18) :3790-3797