Population responses to perturbations: predictions and responses from laboratory mite populations

被引:30
作者
Benton, TG
Cameron, TC
Grant, A
机构
[1] Univ Stirling, Sch Biol & Environm Sci, Stirling FK9 4LA, Scotland
[2] Univ E Anglia, Sch Environm Sci, Ctr Ecol, Norwich NR4 7TJ, Norfolk, England
关键词
density dependence; elasticity; environmental stochasticity; harvesting; population dynamics;
D O I
10.1111/j.0021-8790.2004.00859.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. Mathematical models are frequently used to make predictions of the response of a population to management interventions or environmental perturbations, but it is rarely possible to make controlled or replicated tests of the accuracy of these predictions. 2. We report results from replicated laboratory experiments on populations of a soil mite, Sancassania berlesei, living in 'constant' or 'variable' environments. We experimentally perturbed vital rates, via selective harvesting, and examined the population-level responses. The response depends on the stage manipulated and whether there is environmental variability. Increased mortality usually decreased population size and increased population variability. However, egg mortality in a variable environment increased total population size. 3. We used time-series analysis to construct a stage-based population model of this system, incorporating the responses to both density and variation in food supply. 4. The time-series model qualitatively captures the population dynamics, but does not predict well the way the populations will respond to the change in mortality. Elasticity analysis, conducted on the model's output, therefore did not lead to accurate predictions. 5. The presence of indirect positive population effects of a negative perturbation, but only in a variable environment, suggests that predicting the population response will require the incorporation of density dependence and environmental stochasticity. That the considerable biological complexity of our time-series model did not allow accurate predictions suggests that accurate prediction requires modelling processes within a stage class rather than trying to make do with simple functions of total density.
引用
收藏
页码:983 / 995
页数:13
相关论文
共 50 条
[1]   Talkin' 'bout my generation: Environmental variability and cohort effects [J].
Beckerman, AP ;
Benton, TG ;
Lapsley, CT ;
Koesters, N .
AMERICAN NATURALIST, 2003, 162 (06) :754-767
[2]  
Benton TG, 2000, EVOL ECOL RES, V2, P769
[3]   Optimal reproductive effort in stochastic, density-dependent environments [J].
Benton, TG ;
Grant, A .
EVOLUTION, 1999, 53 (03) :677-688
[4]   Elasticity analysis as an important tool in evolutionary and population ecology [J].
Benton, TG ;
Grant, A .
TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (12) :467-471
[5]   The population response to environmental noise: population size, variance and correlation in an experimental system [J].
Benton, TG ;
Lapsley, CT ;
Beckerman, AP .
JOURNAL OF ANIMAL ECOLOGY, 2002, 71 (02) :320-332
[6]   Population synchrony and environmental variation: an experimental demonstration [J].
Benton, TG ;
Lapsley, CT ;
Beckerman, AP .
ECOLOGY LETTERS, 2001, 4 (03) :236-243
[7]  
BENTON TG, IN PRESS ADV ECOLOGI
[8]   Cycles and trends in cod populations [J].
Bjornstad, ON ;
Fromentin, JM ;
Stenseth, NC ;
Gjosæter, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5066-5071
[9]   Noisy clockwork: Time series analysis of population fluctuations in animals [J].
Bjornstad, ON ;
Grenfell, BT .
SCIENCE, 2001, 293 (5530) :638-643
[10]   The evolution of fitness in life-history theory [J].
Brommer, JE .
BIOLOGICAL REVIEWS, 2000, 75 (03) :377-404