Compressible Navier-Stokes equations with a non-monotone pressure law

被引:73
作者
Feireisl, E [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
D O I
10.1006/jdeq.2001.4137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:97 / 108
页数:12
相关论文
共 9 条
[1]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[2]   Global Existence for a Simplified Model of Nuclear Fluid in one Dimension [J].
Ducomet, B. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2000, 2 (01) :1-15
[3]  
DUCOMET B, 2001, GLOBAL TIME WEAK SOL
[4]   On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :755-767
[5]   Asymptotic compactness of global trajectories generated by the Navier-Stokes equations of a compressible fluid [J].
Feireisl, E ;
Petzeltová, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (02) :390-409
[6]  
Feireisl E., 2001, COMMENT MATH U CAROL, V42, P83
[7]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[8]  
Lions P.-L., 1998, MATH TOPICS FLUID DY, V2
[9]   Bounds on the density for compressible isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Lions, PL .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (08) :659-662