Simple class of bound entangled states based on the properties of the antisymmetric subspace

被引:8
作者
Sindici, Enrico [1 ]
Piani, Marco
机构
[1] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
基金
欧盟地平线“2020”;
关键词
QUANTUM; SEPARABILITY; DISTILLATION; CONJECTURE; CRITERION;
D O I
10.1103/PhysRevA.97.032319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We provide a simple construction of bipartite entangled states that are positive under partial transposition and hence undistillable. The construction makes use of the properties of the projectors onto the symmetric and antisymmetric subspaces of the Hilbert space of two identical systems. The resulting states can be considered as generalizations of the celebrated Werner states.
引用
收藏
页数:5
相关论文
共 33 条
[1]   Experimental four-qubit bound entanglement [J].
Amselem, Elias ;
Bourennane, Mohamed .
NATURE PHYSICS, 2009, 5 (10) :748-752
[2]  
[Anonymous], 2013, Matrix Analysis
[3]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[4]  
Barreiro JT, 2010, NAT PHYS, V6, P943, DOI [10.1038/nphys1781, 10.1038/NPHYS1781]
[5]   Non-decomposable quantum dynamical semigroups and bound entangled states [J].
Benatti, F ;
Floreanini, R ;
Piani, M .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2004, 11 (04) :325-338
[6]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[7]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[8]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[9]   Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light [J].
DiGuglielmo, J. ;
Samblowski, A. ;
Hage, B. ;
Pineda, C. ;
Eisert, J. ;
Schnabel, R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (24)
[10]   Hiding quantum data [J].
DiVincenzo, DP ;
Hayden, P ;
Terhal, BM .
FOUNDATIONS OF PHYSICS, 2003, 33 (11) :1629-1647