Discreteness criterions of isometric subgroups for quaternionic hyperbolic space

被引:7
|
作者
Kim, D [1 ]
机构
[1] Seoul Natl Univ, Sch Math Sci, Seoul 151747, South Korea
关键词
discrete group; quaternionic hyperbolic;
D O I
10.1023/B:GEOM.0000033842.14743.9d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give analogue of Jorgensen's inequality for nonelementary groups of isometries of complex hyperbolic 2-space generated by two elements, one of which is either loxodromic or boundary elliptic for the same group of isometries of quaternionic hyperbolic 2-space. And we give a sufficient condition for a nonelementary subgroup of isometries of quaternionic hyperbolic 2-space generated by two elements one of which is parabolic not to be discrete.
引用
收藏
页码:51 / 78
页数:28
相关论文
共 50 条
  • [1] Discreteness Criterions of Isometric Subgroups for Quaternionic Hyperbolic Space
    Daeyong Kim
    Geometriae Dedicata, 2004, 106 : 51 - 78
  • [2] ON DISCRETENESS OF SUBGROUPS OF QUATERNIONIC HYPERBOLIC ISOMETRIES
    Gongopadhyay, Krishnendu
    Mishra, Mukund Madhav
    Tiwari, Devendra
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (02) : 283 - 293
  • [3] Discreteness criteria for subgroups in complex hyperbolic space
    Dai, BL
    Fang, AN
    Nai, B
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (10) : 168 - 172
  • [4] Discreteness Criteria for Isometric Groups of Real and Complex Hyperbolic Space
    Yang, Shihai
    Fang, Ainong
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (03) : 1443 - 1455
  • [5] A deformation of quaternionic hyperbolic space
    Kerr, MM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (02) : 559 - 569
  • [6] On Bisectors in Quaternionic Hyperbolic Space
    Almeida, Igor A. R.
    Chamorro, Jaime L. O.
    Gusevskii, Nikolay
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (04):
  • [7] On Bisectors in Quaternionic Hyperbolic Space
    Igor A. R. Almeida
    Jaime L. O. Chamorro
    Nikolay Gusevskii
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [8] Homogeneous quaternionic Kahler structures and quaternionic hyperbolic space
    Castrillon Lopez, M.
    Gadea, P. M.
    Swann, A. F.
    TRANSFORMATION GROUPS, 2006, 11 (04) : 575 - 608
  • [9] DISCRETENESS CRITERIA FOR ISOMETRIC GROUPS ACTING ON COMPLEX HYPERBOLIC SPACES
    Fu, Xi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (03) : 481 - 487
  • [10] Homogeneous Quaternionic Kahler Structures and Quaternionic Hyperbolic Space
    M. Castrillon Lopez
    P.M. Gadea
    A.F. Swann
    Transformation Groups, 2006, 11 : 575 - 608